NIGEL J. HITCHIN
The Yang-Mills equations and the topology of 4-manifolds

Astérisque, tome 105-106 (1983), Séminaire Bourbaki, exp. n° 606, p. 167-178

§ 1. The result

(1.1) THEOREM (S.K. Donaldson [8]).—Let X be a compact, smooth, simply connected, oriented 4-manifold such that the intersection form Q on $H^2(X, \mathbb{Z})$ is positive definite. Then there exists an integral basis for $H^2(X, \mathbb{Z})$ such that

$$Q(u, u) = u_1^2 + u_2^2 + \cdots + u_r^2.$$

This theorem should be contrasted with

(1.2) THEOREM (M.H. Freedman [9]).—Let Q be any unimodular quadratic form over \mathbb{Z}. Then there exists a compact, simply connected, topological 4-manifold X such that Q is equivalent to the intersection form on $H^2(X, \mathbb{Z})$.

There are sufficient examples of definite unimodular forms (see [17]) to see that Donaldson's theorem imposes strong restrictions on smooth 4-manifolds.

(1.3) Proof of Theorem (1.1)

Let $r = \text{rank } H^2(X, \mathbb{Z})$ and $2n = \# \{u \in H^2(X, \mathbb{Z}) | Q(u, u) = 1\}$. The proof consists of constructing (as in § 3 - § 7) an oriented cobordism between X and n copies of $\mathbb{C}P^2$. Let p of these have the canonical orientation of the complex structure and $q = n - p$ the opposite orientation. Then

(i) By the cobordism invariance of signature,

$$r = \text{Sign } X = (p - q) \text{ Sign } \mathbb{C}P^2 = p - q \leq n.$$

(ii) Let $\{x_1, x_2, \ldots, x_n\} = \{u \in H^2(X, \mathbb{Z}) | Q(u, u) = 1\}$, then $Q(x_i, x_j) \in \mathbb{Z}$ but by the Cauchy-Schwarz inequality $|Q(x_i, x_j)| < 1$ if $i \neq j$. Hence $\{x_1, \ldots, x_n\}$ is orthonormal and $n \leq r$.

(iii) From (i) and (ii) $n = r$ and $\{x_1, \ldots, x_n\}$ is an orthonormal basis for $H^2(X, \mathbb{R})$. Thus for $u \in H^2(X, \mathbb{Z})$, $u = \sum_{i=1}^{r} u_i x_i$ with $u_i \in \mathbb{Z}$ and $\{x_1, \ldots, x_n\}$ is a basis for $H^2(X, \mathbb{Z})$. Hence $Q(u, u) = \sum_{i=1}^{r} u_i^2$.

167
§ 2. Background

(2.1) Let X be an oriented riemannian 4-manifold. A 2-form $\alpha \in \Omega^2$ is said to be self-dual (resp. anti-self-dual) if $\ast \alpha = \alpha$ (resp. $\ast \alpha = -\alpha$) where $\ast : \Omega^2 \to \Omega^2$ denotes the Hodge star operator.

Let G be a compact Lie group and P a principal G-bundle over X. A connection A on P has curvature $F(A) \in \Omega^2(g)$ where g denotes the vector bundle associated to P by the adjoint representation. For any bundle V associated to P a connection A defines a differential operator $d_A : \Omega^p(V) \to \Omega^{p+1}(V)$. The metric on X defines the formal adjoint $d_A^* : \Omega^{p+1}(V) \to \Omega^p(V)$. The Bianchi identity, satisfied by all connections, is $d_A F(A) = 0$. The Yang-Mills equations are $d_A^* F(A) = 0$.

A connection A on P is said to be self-dual if $F(A) = \ast F(A)$. In this case $d_A F(A) = * d_A F(A) = * d_A F(A) = 0$ by the Bianchi identity, so a self-dual connection automatically satisfies the Yang-Mills equations.

The Yang-Mills equations describe the critical points for the Yang-Mills functional (or action).

$$\|F(A)\|_{L^2}^2 = \int_X |F(A)|^2 d\mu.$$ The self-dual connections give the absolute minimum for compact X which, if $G = SU(2)$, may be expressed via the Chern-Weil theorem as $-8\pi^2 c_2(P)$ where $c_2(P)$ is the 2nd Chern class of the associated rank 2 vector bundle.

The Yang-Mills functional and Yang-Mills equations are invariant under (i) conformal changes of the metric on X (ii) automorphisms of the principal bundle P ("gauge transformations").

(2.2) The initial mathematical development of the study of self-dual connections, motivated by the interest of mathematical physicists, concentrated on the case $X = S^4$ and an explicit description of all solutions was possible [2] using the twistor approach of R. Penrose and R.S. Ward [6] which converted the problem into one of holomorphic bundles on \mathbb{CP}^3.

More recently the self-duality equations have been studied on more general 4-manifolds. There are three major lines of thought which have spurred this progress:

(2.3) If X is a Kähler manifold, the space of anti-self-dual 2-forms $\Omega^2 = \Omega_0^1,1$, the space of primitive 2-forms of type $(1,1)$. A vector bundle with an anti-self-dual connection is then automatically endowed with a holomorphic structure (see [3]) and is moreover stable in the sense of Mumford and Takemoto (see [8], [11]). Converse results have been conjectured and in some cases proved ([13], [8]).

(2.4) The analysis of self-dual connections has been pushed forward by the funda-
mental results of K.K. Uhlenbeck ([20], [21]). Amongst these is the following removable singularity theorem: If A is an SU(2) connection (on the trivial bundle) over the punctured ball $B^n \setminus \{0\}$, self-dual with respect to some smooth Riemannian metric on B^n and with finite action; then there is a bundle automorphism $g : B^n \setminus \{0\} \to SU(2)$ such that $g(A)$ extends smoothly over B^n.

(2.5) The existence of self-dual connections is assured under very general circumstances by a theorem of C.H. Taubes [19]: Let X be a compact, oriented, Riemannian 4-manifold with positive definite intersection form Q, and let P be a principal $SU(2)$ bundle over X with $c_2(P) \leq 0$. Then P admits an irreducible self-dual connection. Taubes' construction makes use of an implicit function theorem which involves L^p estimates on curvature. It should be noted that anti-self-dual harmonic 2-forms may certainly obstruct the existence of self-dual connections, as can be seen by considering $\mathbb{C}P^2$ with $c_2(P) = 1$ [16] and hence by (2.3) no anti-self-dual connections. Taubes' hypotheses and result are the starting point for Donaldson's theorem.

(2.6) As an example of a self-dual connection, take $X = \mathbb{R}^4$ and $G = SU(2)$. Then in terms of a quaternionic coordinate $x \in \mathbb{H} \cong \mathbb{R}^4$ and using the isomorphism $SU(2) \cong \text{Im} \mathbb{H}$ the l-instanton [7] solution of the self-duality equations is given by

$$A_\lambda = \text{Im} \left(\frac{xd\bar{x}}{\lambda^2 + |x|^2} \right) \quad \text{with} \quad F(A_\lambda) = \frac{\lambda^2 dx \wedge d\bar{x}}{(\lambda^2 + |x|^2)^2}$$

and action $8\pi^2$.

(2.7) PROPOSITION.— Let A be a self-dual $SU(2)$ connection on \mathbb{R}^4 with action $8\pi^2$. Then up to a gauge transformation and a translation of \mathbb{R}^4, A is equal to A_λ for some $\lambda \in \mathbb{R}$.

Proof.— By conformal invariance and stereographic projection A is defined on $S^4 \setminus \{x\}$, and by the removable singularity theorem is defined on a bundle $P \to S^4$. Now use [3] § 9 or [2] or [6].
an element of $L^2_3(\Omega^1(g))$, and let G denote the group of L^2_4 sections of $\mathcal{P}_X\mathcal{A}_dG$ ($\mathcal{P}_X\mathcal{A}_dG$ for some faithful representation). Then G is a Banach Lie group of gauge transformations acting smoothly on $\mathcal{P}_X\mathcal{A}_dG$ by $g(A) = A - (d_4A^*)^* g^{-1}$. Let \mathcal{B} denote the quotient space with projection $p : \mathcal{A} \to \mathcal{B}$, and $p(A) = [A]$.

(3.2) Recall that a connection on \mathcal{P} is reducible if its holonomy group is a proper subgroup of SU(2). Since X is simply-connected and \mathcal{P} is topologically non-trivial, the only possible reduction is to $U(1) \subset SU(2)$. Let $\Gamma_A \subset G$ denote the subgroup of covariant constant sections with respect to the connection A. Then A is reducible if $\Gamma_A \cong U(1)$. The equivalence classes of irreducible connections form an open subset $\mathcal{B}^* \subset \mathcal{B}$.

(3.3) PROPOSITION. (i) \mathcal{B} is a Hausdorff space in the quotient topology.

(ii) \mathcal{B}^* is a Banach manifold with charts constructed from the slices $T_{A,e} = \{A + a \mid d^*_A a = 0, \|a\|_{L^2_3} < \epsilon\}$ of the action of G.

(iii) $p : p^{-1}(\mathcal{B}^*) \to \mathcal{B}^*$ is a principal G/Γ bundle with a connection defined by the slices.

(iv) If A is reducible, Γ_A acts on $T_{A,e}$ and the map $T_{A,e}\Gamma_A \to \mathcal{B}$ is a homeomorphism to a neighbourhood of $[A] \in \mathcal{B}$, smooth away from the fixed point set.

Proof. Standard methods (see [3], [12], [14]) using Banach space inverse and implicit function theorems.

(3.4) Let $\mathcal{N} \subset \mathcal{B}$ denote the subspace of equivalence classes of self-dual connections on \mathcal{P}. \mathcal{N} is the moduli space. If $A \in \mathcal{B}$ is reduced to a connection on a principal $U(1)$ bundle $\mathcal{Q} \subset \mathcal{P}$, then (since $\pi_1(X) = 0$) its equivalence class is determined by its curvature $F(A) \in \Omega^2$. If A is self-dual, $F(A)$ is a self-dual closed 2-form, hence harmonic. By Hodge theory $F(A)$ is determined by its cohomology class $2\pi c_1(\mathcal{Q})$. The reduction to $U(1)$ is well-defined modulo the Weyl group, so $[A] \in \mathcal{N}$ is determined by $\pm c_1(\mathcal{Q})$. Since $c_2(\mathcal{P}) = -c_1(\mathcal{Q})^2 = -1$ there are n distinguished points in \mathcal{N} representing the reducible self-dual connections, where $2n = \# \{u \in H^2(X,\mathbb{Z}) \mid \mathcal{Q}(u,u) = 1\}$. From (2.5) there are also irreducible connections.

(3.5) If A is a self-dual connection on \mathcal{P}, then there exists an elliptic complex $[3]$

\[
\Omega^0(g) \xrightarrow{d_A} \Omega^1(g) \xrightarrow{d^*_A} \Omega^2(g)
\]

where d^*_A is the projection of d_A onto the anti-self-dual 2-forms. Let H^P_A $(0 \leq p \leq 2)$ denote the associated harmonic spaces, then by the Atiyah-Singer index theorem (see [3])

\[-\sum_{p=0}^2 (-1)^p \dim H^p_A = 8|c_2(\mathcal{P})| - \frac{3}{2}(\chi(X) - \text{Sign}(X)) = 5.\]
(3.6) PROPOSITION. — Let A be a self-dual connection on P.
Then there exists a neighbourhood U of 0 ∈ H^1_A and a smooth map ϕ : U → H^2_A such that:

(i) if A is irreducible, a neighbourhood of [A] ∈ M is diffeomorphic to ϕ^(-1)(0) ≤ H^1_A.

(ii) if A is reducible, a neighbourhood of [A] ∈ M is diffeomorphic to ϕ^(-1)(0)/Γ_A.

Proof. — The connection A + a is self-dual iff

\[\Phi(A + a) = F_\omega(A + a) = d_A^*a + \frac{1}{2}[a, a] = 0 \in L^2_2(S^2(g)) \]

Restricted to a slice T_A, the derivative DΦ of Φ at A is the Fredholm operator

\[d_A^* : \text{Ker } d_A \left(\leq L^2_2(S^2(g)) \rightarrow L^2_2(S^2(g)) \right), \]

and so Φ is a Fredholm map ([1], [18]). After a local diffeomorphism Φ may be represented as

\[\Phi(x) = (D\Phi_A)_{x} + \phi(x) . \]

The argument is analogous to the methods applied to moduli of complex structures [10].

(3.7) As a consequence of (3.5) and (3.6), if A is irreducible and H^2_A = 0, then M is a smooth 5-manifold in a neighbourhood of [A]. A particular case when this holds for all irreducible A is when the underlying metric on X is self-dual with positive scalar curvature (see [3]). Note that if A is reducible, Γ_A acts on H^1_A by complex multiplication (b_1(X) = 0) so that if H^2_A = 0, H^1_A/Γ_A = S^3/S^1 from the index theorem and dim H^0_A = dim Γ_A = 1.

§ 4. A Key Result.

(4.1) An important tool in understanding the global structure of the moduli space is the following: (see also [15]).

(4.2) PROPOSITION. — Let \(\tilde{A}_i \) ∈ \(M \) be a sequence of self-dual connections on P. Then there is a subsequence such that either:

(i) each \(\tilde{A}_i \) is gauge equivalent to \(A_i \) ∈ \(M \) converging in \(C^0 \) to a self-dual connection \(A_\infty \) on P, and hence \([\tilde{A}_i] \rightarrow [A_\infty] \) ∈ \(M \).

or

(ii) there is a point \(x \) ∈ X and trivializations \(\rho_i \) of \(\tilde{A}_i \) on the complement \(K \) of any geodesic ball about \(x \) such that \(\rho_i^* \tilde{A}_i \rightarrow \Theta \) (the trivial flat connection) in \(C^0(K) \).

Proof. — The proof uses two lemmas:

(4.3) Lemma. — Given \(L, C > 0 \) let \(\{ f_i \} \) be a sequence of integrable functions on X with \(f_i \geq 0 \) and \(\int_X f_i \, du \leq L \). Then there exists a subsequence, a finite set \(\{ x_1, \ldots, x_k \} \) of X and a countable collection \(\{ B_{\alpha} \} \) of geodesic balls in X such that the half-sized balls cover \(X \setminus \{ x_1, \ldots, x_k \} \) and for each \(\alpha \), \(\lim sup \int_{B_\alpha} f_i \, du < C \).

Proof. — Elementary: the \(x_i \)'s are characterized by the property that each lies in
(4.4) Lemma.— Let \(h_i \) be a sequence of metrics on \(B^n \), sufficiently close to the Euclidean metric, and converging in \(C^\infty(B^n) \) to \(h_\infty \). Let \(\tilde{h}_i \) be a sequence of connections on the trivial bundle over \(B^n \) with \(\tilde{h}_i \) self-dual with respect to \(h_i \). Then there is a constant \(C \) (independent of \(h_i \) and \(\tilde{h}_i \)) such that if \(\int_{B^n} |F(\tilde{h}_i)|^2 d\mu \leq C \), there is a subsequence such that \(\tilde{A}_i \) (gauge equivalent to \(\tilde{h}_i \)) converges in \(C^\infty(\frac{1}{2}B^n) \) to \(A_\infty \), a connection which is self-dual with respect to \(h_\infty \).

Proof.— Consequence of ([21] Theorem (1.3)).

(4.5) To obtain (4.2) first consider a geodesic coordinate system \(\chi \) on a geodesic ball \(B \subset X \) of radius \(r \). Thus \(\chi \) defines a diffeomorphism \(\chi : B_r \rightarrow B \) from the euclidean ball of radius \(r \) to \(B \). Pulling back the metric \(h \), and putting it on the Euclidean unit ball by dilation gives a metric

\[
\tilde{h}_r = \chi^* h(rx) = r^2 (\delta_{ij} + r^2 g(y^2)) dy_i dy_j.
\]

Choose \(r \) small enough that the metric \(r^{-2} \tilde{h}_r \) on \(B^n \) satisfies the condition for (4.4). By conformal invariance each \(\tilde{h}_i \) is self-dual with respect to \(h_r \).

Now in Lemma (4.3) take the constant \(C \) from (4.4), \(\int_{B_r} |F(\tilde{h}_i)|^2 \leq L = 8\pi^2 \). Thus from (4.4) on each ball \(B_\alpha \) some subsequence converges (after gauge transformations) to \(A_\infty(\alpha) \). By a diagonal argument the convergence may be achieved simultaneously for all \(\alpha \).

The gauge transformations introduced in the above process give rise to connection matrices \(A_1(\alpha) \rightarrow A_\infty(\alpha) \) in \(C^\infty(\frac{1}{2}B_\alpha) \) and transition functions

\[
\tilde{g}_1(\alpha, \beta) : \frac{1}{2}B_\alpha \cap \frac{1}{2}B_\beta \rightarrow SU(2) \quad \text{satisfying:}
\]

\[
A_1(\alpha) = -d g_1(\alpha, \beta) g_1(\alpha, \beta)^{-1} + \tilde{g}_1(\alpha, \beta) A_1(\beta) \tilde{g}_1(\alpha, \beta)^{-1}.
\]

The compactness of \(SU(2) \) gives a uniform bound to \(d g_1 \) in (4.6) and so one can find a uniformly convergent subsequence. Repeatedly applying (4.6) gives convergence in \(C^\infty \), and using a diagonal argument one obtains a subsequence

\[
(A_1(\alpha), \tilde{g}_1(\alpha, \beta)) \rightarrow (A_\infty(\alpha), \tilde{g}_\infty(\alpha, \beta))
\]

for all \((\alpha, \beta) \) simultaneously. This represents a self-dual connection on a bundle \(\tilde{Q} \) over \(X \setminus \{x_1, \ldots, x_\ell\} \). Furthermore, if \(K \subset X \setminus \{x_1, \ldots, x_\ell\} \) is compact then by induction on the number of balls \(\frac{1}{2}B_\alpha \) covering \(K \) (see [21] Sect. 3) one obtains isomorphisms \(\rho_1 : Q|K \rightarrow \tilde{P}|K \) such that \(\rho_1^* : A_1 \rightarrow A_\infty \) in \(C^\infty(K) \).

(4.7) Let \(B_j \) be a small punctured ball centred on \(x_j \) \((1 \leq j \leq \ell) \). Since

\[
\int_{B_j} |F(\tilde{h}_i)|^2 d\mu \leq 8\pi^2,
\]

by Fatou's lemma

\[
\int_{B_j} |F(\tilde{h}_\infty)|^2 d\mu \leq 8\pi^2.
\]

Hence by the removable singularity theorem (2.4) the connection \(A_\infty \) and bundle \(\tilde{Q} \) extend over \(X \). By the definition of \(x_j \), \(\lim\int_{B_j} |F(\tilde{h}_i)|^2 d\mu > \frac{1}{2} C \) for all balls \(B_j \) hence for a sufficiently small ball.
On the other hand, since all connections are self-dual these integrands are Chern forms. They may therefore be evaluated mod. $8\pi^2\mathbb{Z}$ by boundary integrals (Chern-Simons invariants). Hence by uniform convergence on the boundary ∂B_j,
\[
\int_{B_j} |F(A_\infty)|^2 \, d\mu = \lim_{\partial B_j} \int_{B_j} |F(\hat{A}_1)|^2 \, d\mu \mod. 8\pi^2\mathbb{Z}.
\]
(4.9) However, since $\int_{B_j} |F(A_\infty)|^2 \, d\mu \geq 0$ and $\int_{B_j} |F(\hat{A}_1)|^2 \, d\mu \leq 8\pi^2$ the only possibilities from (4.7) and (4.8) are:

(i) $\lambda = 0$ or
(ii) $\lim_{\partial B_j} \int_{B_j} |F(\hat{A}_1)|^2 \, d\mu = 8\pi^2$ and $\int_{X} |F(A_\infty)|^2 \, d\mu < 8\pi^2$ and hence Q is trivial and A_∞ flat. Thus Proposition (4.2) follows.

(4.10) The proposition shows that a self-dual connection on P can only degenerate by having its curvature concentrate in the neighbourhood of a point. An example is the instanton A_λ in (2.6) as $\lambda \to 0$.

§ 5. The boundary of \mathcal{M}

(5.1) Let $\beta : \mathbb{R} \to \mathbb{R}$ be a bump function approximating and dominated by $\chi_{[-1,1]}$ and set $R_A(x,s) = \int_{x} \beta(d(x,y)/s) |F(A)|^2 \, d\mu_y$, where $d(x,y)$ is the geodesic distance in X. Then define

(5.2) $\lambda(A) = K^{-1}\min\{s \mid \exists x \text{ with } R_A(x,s) = 4\pi^2\}$

where K is chosen so that $\lambda(A_1) = 1$ for the instanton A_1. Donaldson introduces this convenient but ad hoc function as a measure of the concentration of curvature: if β is replaced by $\chi_{[-1,1]}$ then $\lambda(A)$ becomes the radius of the smallest ball containing half the action. In any case a ball of radius $\lambda(A)$ contains more than half the action and hence any sequence $[A_i] \in \mathcal{M}$ without convergent subsequences has $\lambda(A_i) \to 0$ from (4.2). It is thus a measure of the distance from the boundary.

(5.3) PROPOSITION.— There exists $\lambda_0 > 0$ such that if A is a self-dual connection on P with $\lambda(A) < \lambda_0$, then the minimum in (5.2) is attained at a unique point $x(A) \in X$.

Proof.— Take a small geodesic ball of radius r centred on a minimum x for A, and pull back the metric and connection as in (4.5) to the Euclidean ball of radius $r/\lambda(A)$. For each sequence of connections with $\lambda(A_i) \to 0$, the pulled-back connections \hat{A}_i satisfy $\lambda(\hat{A}_i) = 1$ by construction and applying (4.4) and (4.2) there is a subsequence converging to a self-dual connection on \mathbb{R}^n. From the classification (2.7) and normalization this is the instanton A_1. Since $\lambda(\hat{A}_i) = 1$, from
(4.2) every subsequence converges and since the limit is unique, $\Lambda_i \to \Lambda$ as $\lambda(\Lambda_i) \to 0$. Now the function R_Λ has a unique non-degenerate minimum so for sufficiently small $\lambda(A)$, so will R_Λ. Any two minima for A must however be separated by a distance of at most $2\lambda(A)$, since the ball of radius $\lambda(A)$ about each contains more than half the action, thus a unique minimum for R_Λ implies a unique one for R_Λ.

Note how the connectedness of the moduli space for \mathbb{R}^n is essential for this argument.

(5.4) Let $\mathcal{M}_{\lambda_0} = \{[A] \in \mathcal{M} | \lambda(A) < \lambda_0\}$, and define $p : \mathcal{M}_{\lambda_0} \to X \times (0, \lambda_0)$ by $p(A) = (x(A), \lambda(A))$.

(5.5) PROPOSITION.— (i) \mathcal{M}_{λ_0} is compact.
(ii) \mathcal{M}_{λ_0} is a smooth manifold.
(iii) p is a smooth covering map.

Proof.— (i) Immediate from Proposition (4.2).
(ii) As $\lambda(A) \to 0$, $[A] \to \emptyset$ in $C^\infty(X, \mathbb{R}(x(A), r))$ from (4.2). Then using an argument of Taubes [19], $H^2_\Lambda = 0$. The result follows from (3.6).
(iii) p is smooth because the minimum of R_Λ is non-degenerate, and proper by (4.2). Thus one only needs to check that the derivative of p is an isomorphism. Taubes' implicit function theorem provides an inverse.

(5.6) PROPOSITION.— p is a diffeomorphism.
Proof.— This is the most technical part of Donaldson's proof, and involves delicate curvature estimates. The idea is to show that any two self-dual connections A, B with $x(A) = x(B)$ and $\lambda(A) = \lambda(B)$ sufficiently small may be joined by a short path in \mathcal{M} (see [8]).

§ 6. Perturbation of \mathcal{M}

(6.1) If $H^2_A = 0$ for all self-dual connections then \mathcal{M} is a smooth manifold except at the $n(Q)$ points corresponding to the reducible connections. This may not be true in general and there may be a subset $K \subset \mathcal{M}$ (compact from (5.5)) for which $H^2_A \neq 0$. A perturbation of \mathcal{M} is then necessary to obtain a manifold.

(6.2) Perturbation around the reducible connections is dealt with in a straightforward manner: the finite-dimensional map $\phi(x)$ in the decomposition $\Phi(x) = (Dx_\Lambda)x + \phi(x)$ is modified by a nearby map with surjective derivative. Then, as in (3.6) a neighbourhood of $[A]$ is diffeomorphic to \mathbb{R}^3/S^1 — a cone on \mathbb{R}^2. One may assume, then, that $K \subset \mathcal{M} \cap \mathcal{B}^*$.

(6.3) The group \mathcal{G}/\mathcal{H} acts on the Banach spaces $L^2_0(\Omega^2(g))$ and $L^2_0(\Omega^2(g))$ and
associated to the principal \mathbb{G}/\mathbb{Z} bundle $p^{-1}(\mathbb{B}^*)$ over \mathbb{B}^* one obtains vector bundles $E^3 \subset E^2$ with norms and connections. There is a canonical section $\Phi = F_\ast (A)$ of E^2 and one seeks perturbations $\sigma \in C^{\infty}(\mathbb{B}^*, E^3)$, such that $\Phi + \sigma$ vanishes non-degenerately.

(6.4) PROPOSITION.— There exists $\sigma \in C^{\infty}(\mathbb{B}^*, E^3)$, supported in a neighbourhood of K, such that $(\Phi + \sigma)^{-1}(0)$ is a smooth 5-manifold.

Proof.— Covering K with a finite number of slices $T_{A,I}$ and shrinking, take open sets U_1, U_2 with $K \subset U_1$ and $\overline{U}_1 \subset U_2$, and let σ be a bounded section of E^3 supported in U_2. Then $K = \{[A] \in \overline{U}_1 \mid \|\Phi(A)(A)\|_{L^3}^2 \leq R \}$ is compact. This follows from the fact that U_2 is covered by a finite number of slices and on each one $\Phi(A) = d_A^* a + 1/2[a,a] + \sigma(A)$ with $d_A^* a = 0$ and $\|a\|_{L^3}^2 < \epsilon$. Thus L_3^2 bounds on $\sigma(A)$, a and $(\Phi + \sigma)(A)$ give an L_3^2 bound on $(d_A^* + d_A^*) a$ and so by ellipticity an L_3^4 bound on a. Since $L_3^4 \subseteq L_3^2$ is compact the statement follows. Thus if $\Phi + \sigma$ vanishes non-degenerately in \overline{U}_1, so do nearby sections $\Phi + \sigma'$ in the topology of uniform convergence of σ and its derivative on compact sets.

The space of such non-degenerate perturbations is also dense: at each point take a slice on which there is a decomposition $\Phi + \sigma = L + \phi$ where L is linear and ϕ finite dimensional. By compactness, take a finite subcovering and modify $\Phi + \sigma$ by subtracting a regular value of ϕ, extended by a bump function. By Sard's theorem such perturbations can be made arbitrarily close in L^2 norm to $\Phi + \sigma$.

The section Φ itself vanishes non-degenerately outside \overline{U}_1. By the density argument choose a perturbation σ sufficiently small that $\Phi + \sigma$ (by the openness argument on $U_2 \setminus \overline{U}_1$) vanishes non-degenerately on $U_2 \setminus \overline{U}_1$. Then $\Phi + \sigma$ is non-degenerate everywhere. Let $\mathcal{M}^\sigma = (\Phi + \sigma)^{-1}(0)$, a 5-manifold with n quotient singularities E^3/S^1 and boundary X.

§ 7. Orientability of \mathcal{M}^σ

(7.1) On the manifold $\mathcal{M}^\sigma \cap \mathbb{B}^*$ one must consider the Stiefel–Whitney class $w_1(\ker V(\Phi + \sigma))$. The singular points can be avoided by using the gauge transformations $G_0 \subset G$ which are the identity at a fixed point $x_0 \in X$. These then act freely on \mathcal{M} to give quotient $\mathbb{B}^* \rightarrow \mathbb{B}$. Over \mathbb{B}^*, π gives a principal $SO(3)$ bundle, so $\mathcal{M}^\sigma \cap \mathbb{B}^*$ is orientable iff its pull back to $\pi^{-1}(\mathcal{M}^\sigma \cap \mathbb{B}^*)$ is.

(7.2) The vector bundle $\ker V(\Phi + \sigma)$ restricted to any compact subset $Y \subset \pi^{-1}(\mathcal{M}^\sigma \cap \mathbb{B}^*)$ defines an element of $KO(Y)$. This is the index class [5] of the family of Fredholm operators $d_A^* + d_A^- + (\nabla \sigma)A$, which by considering the deformation $d_A^* + d_A^- + t(\nabla \sigma)A$, $0 \leq t \leq 1$, is independent of σ. Since w_1 factors
through KO, the orientability can be decided by considering $\text{ind}(d_A^* + d_A^-) \in \text{KO}(Y)$ where Y is a loop. Since this is now defined for all equivalence classes of connections, the loop may be deformed in \mathcal{B}.

(7.3) If SU(2) is embedded in SU(3) in the standard way, the Lie algebra bundle \tilde{g} of the associated SU(3) connection ∇ splits as $\tilde{g} = g \oplus R \oplus V$ where V is a complex rank 2 bundle and R a trivial bundle, all preserved by the connection. Thus $\omega_1(\text{ind}(d_A^* + d_A^-)) = \omega_1(\text{ind}(d_A^* + d_A^-))$ and so the loop may be deformed in the space \mathcal{B}_3 of equivalence classes of SU(3) connections.

(7.4) PROPOSITION.-- $\pi_1(\mathcal{B}_3) = 0$.

Proof.-- Since the group \mathcal{G}_0 of SU(3) gauge transformations preserving x_0 acts freely, $\pi_1(\mathcal{B}_3) \cong \pi_0(\mathcal{G}_0)$. The principal bundle P is trivial on the complement of a point and in particular on the 2-skeleton of X. Since $\pi_2(\text{SU}(3)) = 0$ any element of \mathcal{G}_0 can be deformed to one which is the identity on the 2-skeleton. Collapsing the 2-skeleton of X gives a sphere S^4. The homotopy type of \mathcal{G}_0 on S^4 is independent of $c_2(P)$ (see [4]), so the question reduces to the trivial bundle. But $\pi_4(\text{SU}(3)) = 0$, so \mathcal{G}_0 is connected.

Thus $\mathcal{H}_0 \cap \mathcal{B}^*$ is an oriented 5-manifold which, putting in the boundaries of the quotient singularities provides the cobordism of Theorem (1.1).

§ 8. Examples

(8.1) Let $X = S^4$, with the canonical metric. Then any self-dual connection on P is gauge equivalent to f^*A where $f : S^4 \rightarrow \mathbb{H}P^1$ is a conformal map and A is the canonical connection on the quaternionic Hopf bundle. Since isometries of $\mathbb{H}P^1$ preserve A, the moduli space is $SO(5,1)/SO(5) \cong$ hyperbolic 5-space. This is the ball B^5 with boundary S^4. There are many ways of proving this ([2], [3], [6]).

(8.2) Let $X = \mathbb{C}P^2$ with its canonical metric. In the non-compact component of \mathcal{H}, any connection is gauge equivalent to f^*A where $f : \mathbb{C}P^2 \rightarrow \mathbb{H}P^2$ is equivalent under the action of SU(3) on $\mathbb{C}P^2$ to a map of the form

$$(z,w) \mapsto \left(z, \frac{a \bar{z} + \bar{w}}{1 - \bar{z}^2} \right), \quad a \in (0,1)$$

in affine coordinates. When $a = 0$ this is the standard embedding $\mathbb{C}P^2 \subset \mathbb{H}P^2$ and gives the reducible connection. The moduli space is a cone on $\mathbb{C}P^2$ where a is essentially the distance from the vertex. This was proved by Donaldson (unpublished) using the algebraic geometry of the flag manifold F_3, and the Penrose/Ward approach.
§ 9. References

Nigel J. HITCHIN
St. Catherine's College
GB - OXFORD OX1 3UJ