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THE JONES-WITTEN INVARIANTS OF KNOTS

par Michael ATIYAH

Seminaire BOURBAKI

42eme annee, 1989-90, n° 715
novembre 1989

1. INTRODUCTION

One of the most remarkable developments of recent years has been
the work initiated by Vaughan Jones [2] [3] on knot invariants. This has

all the hallmarks of great mathematics. It produces simple new invariants
which solve classical problems and it involves a very wide range of ideas and

techniques from practically all branches of mathematics and physics. Here
is a list of the areas which have been significantly involved in the theory
up to the present : combinatorics, group representations, algebraic geom-
etry, differential geometry, differential equations, topology, Von Neumann
algebras, statistical mechanics, quantum field theory..Moreover the subject
continues to develop rapidly and a final picture has not yet emerged.

Given this very wide field I have to be very selective for a one-hour

presentation. I will concentrate on some aspects and I shall have to omit all
the technicalities. Moreover, to shorten the exposition, I will discuss only
the simplest case of the theory. Fuller accounts can be found in the papers
of Vaughan Jones [3] and Witten [9].

In 1984 Vaughan Jones surprised the experts in knot theory by pro-
ducing a polynomial invariant, now known as the Jones polynomial V(q) ,
which was superficially similar to the classical Alexander polynomial but
was, in essential features, rather different. In particular V(q) could distin-
guish (some) knots from their mirror images. For this and other reasons

V(q) turned out to be a very effective tool in knot theory and, as a re-
sult, old conjectures of P.G. Tait from the 19th century have now been
S.M.F.
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established.

The Jones polynomial can be profitably studied from many angles and
it has been generalized in several ways to produce further knot invariants.
Much of this work has involved important ideas from theoretical physics,
essentially physics of 2 dimensions. However a major break-through came in
1988 when Witten [10] gave a simple interpretation of the Jones polynomial
in terms of 3-dimensional physics. These ideas of Witten are based on a

heuristic use of the Feynman integral, but they lead to very explicit results
and calculations which can be verified by alternative rigorous methods. A
full mathematical treatment of Witten’s theory has yet to appear, so my
account has to be somewhat sketchy and incomplete.

Not only does Witten’s theory provide a physical "meaning" for the
Jones invariants but it also extends them to knots in an arbitrary com-

pact oriented 3-manifold. This is a major generalization which had been

attempted unsuccessfully via other methods. Finally, and most signifi-
cantly, Witten’s generalization allows us to define "relative invariants", for
3-manifolds with boundary. In this case the invariants are not numbers

but take their values in a vector space associated with the boundary. This

facility, of allowing manifolds with boundary, makes the theory much more
flexible and greatly facilitates computation, even for the "absolute" case of
closed 3-manifolds. The situation may roughly be compared with the story
of Lefschetz numbers in classical topology. The number of fixed points of a

self-map (analogous to the Jones invariant of a knot) re-interpreted as the
Lefschetz number, through the induced map on homology, becomes part of
a larger theory (analogous to Witten’s theory) and hence more computable.

In the next section I will summarize the key features of the Jones

polynomial, before going on in section 3 to describe Witten’s theory. In

section 4 I will outline the way in which Witten’s theory may be developed
mathematically. I will make no attempt in this presentation to give the

physical interpretation via Feynman integrals. For this I refer to Witten’s

papers [9] [10]. For a general survey of "topological quantum field theories"
see also [1] [8].



2. THE JONES POLYNOMIAL

We shall deal with oriented knots and links. These are just oriented

1-dimensional submanifolds of the 3-space S3 : a knot being the case of one

component. For an oriented link L the Jones polynomial VL(q) is a finite
Laurent series in the variable q 2 with integer coefficients. Its first basic

properties are :

(2.1) VL(q) =1 when L in the standard unknotted circle,
(2.2) VL*(q) = where L* is the mirror image of L .

VL (q) can be characterized by a skein relation. For this we consider a generic
plane projection of L , so that all crossing points have just 2 branches, one
"over" and one "under". Focussing attention on one crossing point we
can then consider the 3 versions of L obtained by allowing the 3 different

possibilities as shown below :

The skein relation for VL (q~ is the linear relation :

It is not hard to show that (2.1) and (2.3) uniquely determine VL(q) .
The difficulty is to prove consistency, i. e. that VL( q) depends on the link
L (up to isotopy) and not on any particular plane projection.

Note.- In fact VL(q) does not depend on the orientation of L. However

this is not true for the generalizations of VL(q) , except that reversing the
orientation of all components of L will always preserve the generalized Jones

polynomials.

Example.- For a (right-handed) trefoil knot V(q) = -q4 + q3 + q . By (2.2)
this distinguishes it from its mirror image, the left-handed trefoil.



Although it is possible to verify the consistency of (2.3) by direct com-
binatorial methods this is not very enlightening. A better approach, ex-

plained in [3], is based on the use of braids.
The Artin braid group on n strands Bn can be defined as the funda-

mental group of the configuration space Cn of n unordered distinct points
in the plane. There is an elementary geometric construction which assigns
to any braid f3 an oriented link /3 in S3 . All links arise in this way and the
equivalence relation on the union of all Bn given by

is explicitly known. Thus one may construct link invariants from suitable

braid invariants.

To get the right braid invariants to produce VL(q) , Jones introduces
certain representations of Bn .

These are representations depending on a parameter q and a partition
A of n. For q = 1 they reduce to the irreducible representations of

the symmetric group Sn pulled back to Bn via the natural homomorphism
Sn . The representations pa(q) come from representations of the

Hecke algebra.
The Jones polynomial VL(q) for L = /3 is now defined as a certain

linear combination of the characters of evaluated at /3 . The only

partitions A which are needed here are the partitions of n into (at most) 2

parts.

Note.- For generalizations of VL(q) one needs all partitions of n. These

generalizations lead to polynomials satisfying suitable generalizations of

(2.3).

In this braid group approach to the Jones polynomial it is still a mys-

tery why suitable linear combinations of the characters should give
link invariants. The underlying reason becomes clear in Witten’s theory as

we shall see.



3. THE WITTEN THEORY

Witten considers oriented links L in an arbitrary compact oriented 3-
manifold Y. Moreover both Y and L are assumed to be framed. For Y

this means we fix a trivialization of the tangent bundle while for L it means

that we fix a trivialization of its normal bundle in Y . In both cases only
the homotopy class of the pairing will be significant.

Witten’s invariant of the pair (Y, L) is a complex valued function of a
positive integer k : we denote it by WY,L(k). There are two extreme cases
of special interest:

i) 
ii) L = ~ .

In the first case when Y = S3 there are standard choices (up to homo-

topy) for the framing of Y and of any link L . The standard framing on Y
is the one which when stabilized (by adding trivial bundles) extends to the
interior 4-ball. The standard framing of L is characterized by the property
that each component Lj of L has zero linking number with the "parallel"
copy Lj we get by using the framing. With these standard choices of fram-
ing the Witten invariant now depends only on the oriented link L . It is

related to the Jones polynomial VL (q) by the formula :

This shows that the Witten invariant in this case determines, and is

essentially equivalent to the Jones polynomial. Thus Witten’s invariant for

general Y is indeed a generalization of the Jones invariant.
Case ii) when there is no link leads to an invariant Wy(k) for an

oriented 3-manifold Y . Witten’s invariant is naturally normalized so that

(for a suitable framing) Wy(k) = 1 for Y = S1 x s2 . On the other hand
the formula for Y = S3 is less trivial, namely

As mentioned in section 1, Witten’s invariant also extends to a "rela-
tive" invariant when Y is a 3-manifold with boundary E . We assume in



this situation that the 1-manifold L meets the boundary transversally in a
finite set of points aL = P = (P1, ... , Pn) . The framings on Y, L induce a
stable framing on £ and a normal framing of each point Pi on £ (warning :
we do not at present allow homotopies of these framings).

Witten’s relative theory assigns a finite-dimensional complex vector

space Hk(~, P) to each such framed pair (E, P) and each positive integer
k. Reversing the orientation of £ (and using the natural corresponding
framings) converts H into its dual i. e.

Moreover these vectors spaces are multiplicative in the sense that for the

disjoint sums :

then Witten’s relative invariant is a vector

These vector spaces and invariants have various naturality properties
which we shall not describe, but the key property is the relation between

relative and absolute invariants. Of course if Y is closed so that £ is empty
then formally we want the relative and absolute invariants to coincide and

this requires

The significant case however is when we cut a closed 3-manifold Y (and
link L) into two parts along a common surface E . Thus



The vectors

then lie in dual spaces (by (3.3)), so that this scalar product is well-defined.
The key fact is then

By decomposing Y in various ways one can use the relative invariants
to help calculate the absolute invariants. In particular (3.7) implies the
existence of a skein relation for the absolute invariant when Y = S3 . For
this one has to know that, for S2 with 4 points P1, ... P4 ,

Now apply (3.7) with Y1 a small ball in the neighbourhood of a crossing
point of the link L (viewed as nearly planar). Keeping L2 fixed but taking
the 3 possible choices of L1 (joining the Pi in pairs) we get 3 different
vectors in the 2-dimensional space of (3.8). These must satisfy a linear
relation (with coefficients independent of L ). Taking the scalar product
with the vector (in the dual space) coming from (Y2, L2) and applying (3.7.)
we deduce the existence of a skein relation. In this way, once the coefficients

have been determined, Witten can identify his absolute invariant with that
of Jones as asserted in (3.1).

If we take (with I the unit integral) and use
(3.3) and (3.4) we see that Wk(Y, L) can be viewed as an automorphism
of Hk(~, P) . This depends on framings of (Y, L) i. e. on homotopies of
framings for (~, P) . In fact all such automorphisms are scalar multiplica-
tions and depend only on the initial and final framings. The computation
of these scalars is an important but delicate part of the theory.

If we ignore scalar factors and replace the vector space ~k(E, P) by the
associated projective space its functorial properties provide an action on it
of the group of components of the orientation preserving
diffeomorphisms of E preserving P .

In particular when £ == S2 these are essentially the representation of
the braid group arising from the Hecke algebra which Jones employs to get
his invariants.



4. MODULI SPACES

Witten defines his theory heuristically by a Feynman integral. This

is not rigorous but it does lead to a rigorous theory of the vector spaces
Hk(~, P) which I will now describe.

For simplicity consider first the case when 7~ == ~ , so that we simply
have a surface £ with no marked points. To construct ~f~(E) we first pick a

complex structure T denote the resulting Riemann surface by We

can then define the moduli space of holomorphic SL(2, C)-bundles
over This is a projective variety with a Zariski open set representing
stable vector bundles, and has been much studied by algebraic geometers
[4]. It has an ample generating line-bundle L and we define

to be the space of holomorphic sections of L~ . This is of course a standard
construction in algebraic geometry. What is not so obvious from this point
of view, is that the projective space of is essentially independent of
the complex structure .

More precisely by allowing T to vary over Teichmuller space we get a

holomorphic vector bundle and this bundle has a natural connection whose

curvature is a scalar. This shows in particular that the group of components
of acts on the associated projective space of covariant constant

sections.

The second essential ingredierit in the Witten theory is the construction
of the vector Wk ( Y ) E H~ ( E ) when aY = E . There is no way known at

present which is both simple and rigorous. A rigorous procedure is to use a

sequence of elementary surgeries (or a Morse function) and to 
from these elementary steps. One then has to verify that the result is

independent of the surgeries (or Morse functions) chosen.
If we use a Morse function then we are reduced to studying the be-

haviour of the vector spaces as T -~ To , the complex structure of

a singular Riemann surface with ordinary double points. It can be shown

that the vector bundle formed by the Hk(ET) extends over To and the sub-



space preserved (up to scalars) by the local monodromy of the connection
can be identified with where Eo is the desingularization of ETO .

The homomorphism H~ ( Eo ) =; is then the vector associated

by (3.5) to a 3-manifold Y with 9F = Eo . 
’

The framings on Y, ~ which I have been ignoring at this stage are
needed to replace the projective spaces by vector spaces.

For the general case of surfaces E with marked points all this the-

ory extends in a natural way. The moduli space has a natural

generalization to a moduli space M(ET, ~) , using bundles with parabolic
structures at the marked points in the sense of Seshadri [6].

Much of the literature on this topic is to be found in papers on rational

conformal field theory, and the spaces Hk(E,7~) above are referred to as
the spaces of conformal blocks. A rigorous mathematical treatment in this

framework is given in [7].

A different and more differential-geometric approach is being developed
by Axelrod, Witten and Hitchin, but these versions have not yet appeared.

A verification that Witten’s invariants of 3-manifolds are well-defined

has been given by Reshetikin and Turaev [5], using surgery techniques (the
Kirby calculus).

Finally I should recall that I have implicitly just been describing the

simplest case of the Witten-Jones theory. In general one picks a compact
Lie group G and an irreducible representation V . I discussed only the case
G = SU(2), V = C2 (note that V = V* which need not hold in general).
The theory extends to the more general case without serious modification.
In particular the relevant moduli spaces are still well-defined.
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