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REPORT ON IGUSA’S LOCAL ZETA FUNCTION

BY JAN DENEF

Séminaire BOURBAKI Juin 1991

43eme annee, 1990-91, n° 741

Igusa’s local zeta functions are related to the number of solutions of congru-
ences mod pm and to exponential sums mod pm. This report is a survey on

what is known about these zeta functions. There are several conjectures and

intriguing connections with topology and singularity theory. They will be em-

phasized throughout the paper (especially sections 2 and 4). The case of curves
is well-understood and is explained in section 5 without any calculations. Much
less is known in higher dimensions, although there is by now a lot of experimen-
tal evidence (section 6) for the monodromy conjecture which relates the poles
of Igusa’s zeta functions to local monodromy. Relative invariants of prehomo-
geneous vector spaces are discussed in section 7. They provide very interesting
examples which motivated the conjectures. The adelic situation is only men-
tioned briefly in 7.7. We will not treat the connection with Siegel-Weil formulas,
but refer for this to Igusa’s book [30, Chap. 4] and his survey paper [34]. At

the end we briefly discuss the theory of p-adic subanalytic sets which yields very
general rationality results.
1. FIRST PROPERTIES OF LOCAL ZETA FUNCTIONS

1.1 Local zeta functions

(I.I.I) Let I1 be a p-adic field, i.e. ~K: Qp]  oo. Let R be the valuation

ring of I~, P the maximal ideal of R, and I( = R/P the residue field of ~~. The
cardinality of I~ is denoted by q, thus A = Fq. For z E ~~, ord z E Z U { +00 }
denotes the valuation = and ac(z) = where ~r is a fixed

uniformizing parameter for R.

(1.1.2) Let f (x) E ~~(x~, x = (xl, ... , xn), f ~ I~. Let ~ : -~ (C be a Schwartz-

Bruhat function, i.e. a locally constant function with compact support. Finally,
S.M.F.
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let x be a character of R" , i.e. a homomorphism x : R" --~ ~" with finite image,
where RX denotes the group of units of R. We formally put x(0) = 0.
(1.1.3) To the above data one associates Igusa’s local zeta function

for s E C, Re(s) > 0, where Idxl denotes the Haar measure on Kn so normalized
that Rn has measure 1. These zeta functions were introduced by Weil [83] and
their basic properties for general f were first studied by Igusa [28], [30]. We will
see below that Z~ (s, x) is rational in q-S, so that it extends to a meromorphic
function on C.
We will write Z, resp. Zo, instead of when $ is the characteristic function

of Rn, resp. PRn . Throughout this paper, we put t = Note that 

is a power series in t. The coefficient of tm in a power series P(t) is denoted by
CoefftmP(t). We denote the trivial character by xir;v and the support of $ by
Supp ~.

(1.1.4) Remark. Note that ac(f(x)) and hence also x, h, f) depend on the
choice of the uniformizing parameter 7r. More canonically one introduces

as a function of a quasicharacter w of (i.e. a continuous homomorphism
w : I~" --~ (C" ). Every quasicharacter w of I~" is of the form ~(~/) = 
Thus studying is equivalent with studying x, ~~, f ).

Sometimes it is also helpfull to think of Z~ as a distribution $ ’2014~ ZI>.

1.2 Number of solutions of congruences

(1.2.1) Suppose f(x) has coefficients in R. Let Nm be the number of solutions of

f(x) == 0 mod Pm in and put P(t) := The Poincaré

series P(t) is directly related to Z(s, xtriv) by the formula

Indeed, since q-nrnNm equals the measure of {x E Rnlord f (x) > m}, this
follows directly from



To verify this last equality note that the left-hand side equals

1.3 Rationality of local zeta functions

(1.3.1)Resolutions. Put X = Spec I~~x~ and D = Spec K~xJ~( f (x)). Choose an
(embedded) resolution (Y, h) for over K, meaning that Y is an integral
smooth closed subscheme of projective space over X, h : Y -~ X is the natural

map, the restriction h : isomorphism, and the reduced
scheme associated to has only normal crossings (i.e. its

irreducible components are smooth and intersect transversally, cf. [25]). Let

Ei, i E T, be the irreducible components of (h-1 (D))red. These consist of the
components Ei, i E Ts, of the strict transform of D, and the exceptional divisors

Ei, i E For each i E T let Ni be the multiplicity of Ei in the divisor of f o h
on Y and let vi -1 be the multiplicity of Ei in the divisor of h*(dxl A ... A dXn).
The (Ni, vi) are called the numerical data of the resolution. For i E T and I ~ T
we consider the schemes

When I = 0, we put Y. Finally let C f C X be the singular locus of

(1.3.2) Theorem (Igusa [28],[30]). Assume the notation of l. I and 1.3.I, then
(i) is a rational function of q-s. Its poles are among the values s =

-vi/Ni + 203C0-1k/Ni loge q with k E Z and i E T such that the order of x
divides Ni.

(ii) If C j n Supp $ C f -1 (0), then = 0 for almost all x.

Proof of (i). Consider the set Y(K) of K-rational points of Y as a I(-analytic
manifold. We have



where E and r~ are analytic in a neighbourhood U of band E(b) =f 0, ~ 0.
Note that ~r~~ and x(ac E) are constant on U when U is small enough. Because

~) is compact, we see that is a finite ~-linear combination

of products of factors of the form C Z, 
But this last integral is zero unless the order of x divides Ni, in which case it is
a rational function of q-S with denominator 1- This proves (i). For

(ii), see [30, p. 91-96].

Remark. The rationality of Z~ (s, x) can also be proved without the use of res-
olution of singularities, see [10] and section 8.

1.4. Exponential sums and integration on fibers

(1.4.1) Let 03A8 be the standard additive character on K, thus, for z E K,
= where Tr denotes the trace. Weil [83] introduced

the following two functions

for z E K and y VI, where VI = f (C f). The function Ecp (z) is locally
constant and bounded on K. One is interested in its behaviour for z ( --~ oo. The

simplest case is when 0, then = 0 for Izllarge enough. The
function Pcp (y) is locally constant on K B V f and has compact support. One is
interested in its behaviour when y tends to a point of Vf. For a nice introduction,
see Serre [73].

We will write E, F, resp. Eo, Fo, instead of when $ is the characteristic

function of Rn, resp. PRn.

(1.4.2) Suppose f (x) E R~x~, m E I~~~O~. If u E R", then obviously E(u7r-m) =
which is a classical exponential sum mod 

Let a E and denote by Nm (a) the number of solutions in R/Pm of the

congruence a mod Prn. Then one verifies that F(a) = 
for m big enough (depending on a). This stable quotient F(a) is classically
known as the local singular series associated to f and a, and plays an important
role in the circle method.



(1.4.3) Note that = fK is the Fourier transform of 

on K and that K, f ) = fK is the Mellin transform of (1 -
q-1 on This gives the relation between exponential sums and local
zeta functions. By decomposing $ and translation one reduces to the case where
GI n Supp $ C f -1 (0). Then, due to 1.3.2 (i) and (ii), the following are related
by formulas (see [28], [30]):

(i) Principal parts of the Laurent expansions of the X) around their
poles,

(ii) Terms of an asymptotic expansion of as Izl -> oo,
(iii) Terms of an asymptotic expansion of as y -~ 0.

Still more information is provided by the following.

(1.4.4) Proposition. Let u E R" and m E Z. Then equals

where c(x) denotes the conductor of x, i.e. the smallest c ~ 1 such that x is
trivial on 1 + P~, and gx denotes the Gaussian sum

Proof. Replacing f by u f we see that it suffices to prove the theorem for u = 1.
We introduce for any e E N B f 0} the integral

Direct verification shows

The proposition follows now from 1.2.2, since Fourier transformation on 
yields Z~ (s~ X).



(1.4.5) Corollary (Igusa [28], [30]). Suppose that Cf ~ Supp 03A6 C f -1 (0).
Then for Izl [ big enough a finite C-linear combination of functions of the

form with coefficients independent of z, and with A E C
a pole of (s + xtriv) or of x), x ~ xtriv, and with 03B2 E N,03B2 
(multiplicity of pole ~) -1. Moreover all poles ~ appear effectively in this linear
combination.

Proof. This follows from 1.3.2 (i), (ii) and 1.4.4, by writing in partial
fractions.

1.5 Igusa’s conjecture on exponential sums
Let F be a number field, f(r) E ~0~ a homogeneous polynomial and a E I~.
Suppose 1  (7  min where the minimum is taken over all i except those
with Ni = vi = 1 and the (Ni, vi) are the numerical data of a fixed resolution
of (0) over F. By 1.4.5, for each p-adic completion I( of F there exists

E R satisfying I~, f) (  for all z E I~.

Conjecture (Igusa [30]). In the above inequality one can take c(I() independent
of I~.

This is related to the validity of a certain Poisson formula, see [30, p. 122,
170]. Igusa [27] proved the conjecture when C f = {0~, by using Deligne’s bound
[8] for exponential sums over Fq, which in turn depends on the Riemann hy-
pothesis for varieties over Fq. He also verified it for certain relative invariants
of prehomogeneous vector spaces [26], [29], [30, p. 123-127]. Recently Sperber
and Denef proved the conjecture for polynomials f(r) which are non-degenerate
with respect to their Newton polyhedron 0( f ) (see 5.3) assuming that ~( f ) has
no vertex in ~0, l~n (and only considering toric resolutions).
1.6 The Archimedean case

Replacing I( by I~ or C and $ by a C°° function with compact support, one
defines

for s E C, Re (s) > 0, where 6 = 1 if Ii = R and 6 = 2 if 7f = C. One

proves that Z~ (s, ~1, f ) extends to a meromorphic function on C whose poles are
rational, either by resolution of singularities [2],[5] or by the theory of Bernstein
polynomials [4].



2. MONODROMY AND BERNSTEIN POLYNOMIALS

2.1 Monodromy
(2.1.1) Let f : non constant polynomial map and fix b E (C’~ with

f(b) = a. Let B C cn be a small enough ball with center b. Milnor [63] proved
that the restriction is a locally trivial C°° fibration over a small enough
pointed disc A C C B ~a~ with center a. Hence the diffeomorphism type of the
so called Milnor fiber Fb := n B of f around b does not depend on t E A
and the counter clockwise generator of the fundamental group of A induces an

automorphism T of H.(Fb, C) which is called the local monodromy of f at b.

It is well known that the eigenvalues of T are roots of unity (see [22, Expose
I]). When b is an isolated critical point of f , a result of Milnor [63] states that
Hi (Fb, cC) = 0 for i ~ 0, n - 1, and H° (Fb, (C) = C with trivial monodromy
action.

(2.1.2) Theorem (A’Campo’s formula [1]). Suppose b is an isolated critical
point of f , with I(b) = 0, ?7 ~ 2. We adopt the notation of 1.3.1 with K = C.
Then the characteristic polynomial of the monodromy action on (Fb, C)
equals

where x denotes the Euler characteristic with respect to singular cohomology.
In particular for > 1, is an eigenvalue of the local

__ 

0

monodromy at b if and only if EklNi x(Ei n h-1 (b)) ~ 0.
2.2 The Bernstein polynomial
I.N. Bernstein [4] has proved for any polynomial f(x), x = (xl, ... , xn), over
a field I( of characteristic zero, that there exist P E I~~~, ax, s], and b(s) E
J{[s] B ~0~ which satisfy the functional equation = The monic

polynomial b(s) of smallest degree which satisfies this functional equation is
called the Bernstein polynomial of f and will be denoted by b f(s). If f is not
constant, then s + 1 divides b f(s). If further f = 0 has no singular points over
the algebraic closure of K, then = s + 1. A basic theorem of Kashiwara

states that all roots of b j (s) are negative rational numbers. When K = I~ or C
one easily verifies, using the functional equation and integration by parts, that



the poles of K, f) are among the values s = a - j with a a root of b f(s)
and j E N. Note however that this integration by parts does not make sense in
the p-adic case.

The roots of bf(s) are related to the geometry of f. Indeed by Malgrange [58],
if a is a root of b j (s) then is an eigenvalue of the local monodromy
of f at some point of (0), and all eigenvalues are obtained in this way. (Note
that b I ( s) is the least common multiple of all local Bernstein polynomials, see

e.g. [23, Lemma 2.5.2~.)
Thus, in the Archimedean case if s is a pole of K, f) then 

is an eigenvalue of monodromy. (For a direct proof in the isolated singularity
case, see Malgrange [57].) Moreover, Barlet [3] has proved that each eigenvalue
is obtained in this way, when K = C. We refer to Loeser [50] for information on
the exact location of the poles and to Loeser [51] for an estimate on the largest
pole.

2.3 The monodromy conjecture
Motivated by the situation in the Archimedean case 2.2 and the study of concrete

examples, it is natural to propose the following conjectures for any polynomial
f (x) over a numberfield FCC.

(2.3.1) Conjecture (Igusa [36]). For almost all p-adic completions K of F , if
s is a pole of Z(s, x, K, f), then Re(s) is a root of b f(s).

This conjecture has been verified in special cases, see 5.2.5, 5.3, 7.3 and 7.4

below.

(2.3.2) Monodromy conjecture (Igusa). For almost all p-adic completions
K of F, if s is a pole of Z(s, x, Is, f ), then exp(203C0-1 Re (s)) is an eigenvalue
of the local monodromy of f at some complex point of 

Note that the first conjecture implies the second by what we said above. But

for the second one there is by now a massive amount of experimental evidence,
see section 6. Both conjectures might be true for all p-adic completions and for

Z replaced by Z~. In most numerical examples, theorem 1.3.2 yields a very big
list of candidate poles. However, due to miraculeous cancellations, usually many
of these candidates are no pole. This strange phenomenon would be explained
by the monodromy conjecture.



Loeser [53] studied zeta functions J Kn of several

variables and formulated a conjecture on the existence of certain asymptotic
expansions (generalizing 1.4.3 (iii)). Surprisingly this conjecture implies a re-
lation between the polar locus of these zeta functions and the geometry of the
discriminant of f 1, , .. , f k . Moreover there are connections with the monodromy
conjecture.

3. EXPLICIT FORMULAS

We continue to use the notation of 1.1 and 1.3.1. Reduction mod P is denoted

by - .
(3.1) We call a Schwartz-Bruhat function $ residual if Supp ~ C R and ~(x)
only depends on x mod P. Such $ -~ C.

(3.2) We say that the resolution (Y, h) for (0) has good reduction modP if
Y and all Ei are smooth, UiETEi has only normal crossings, and the schemes

Ei and Ej have no common components whenever i (cf. [12]). Here the

reduction mod P of any closed subscheme Z of Y is denoted by Z and defined
as the reduction mod P of the closure of Z in projective space over Spec R[x].
If in addition N; / P for all i E T then we say that the resolution has tame

good reduction. When f and (Y, h) are defined over a number field .F, we have
good reduction for almost all completions K of F. When the resolution (Y, h)

_ _ o _ _

has good reduction we have EI = ~i~IEi and we put EI = EI 1 Uj~TBIEj and
o _ _ _ _ _

Ei = Ei B Finally let C- be the singular locus of f : Kn -~ I~.
3.3 Theorem [14]. Let f E R~x~, f ~ 0. Suppose that has a resolution

with tame good reduction mod P and that ~ is residual. If x is not trivial on 1+P
then ~) is constant as function of s. If moreover C- n Supp 03A6 c f 1 0 ,
then = 0.

3.4 Theorem [12], [14]. Let f E R~x~, 0. Suppose that (Y, h) is a resolution
for f !1 (o) with good reduction mod P, and that ~ is residual. Let x be a

character of RX of order d which is trivial on 1 + P. Then



o

Here is defined as follows: If a E and dlNi for all i E I then we
can write f o h = uwd with E Oy,a and we put := x(u(a)).
We will write resp. instead of when $ is the characteristic

function of Rn, resp. P Rn. To denote the dependence on jFC, we will sometimes
write 

3.5 Cohomological interpretation. Assume the hypothesis of 3.4 and choose
a prime f with f f q. Note that x induces a character of Fq which we denote
again by x. Let Lx be the Kummer ~~-sheaf on {0~ associated to this
last character (see [9, Sommes Trig.]). Put U = Y ~ ( f o h) 1 (o). Let v be
the open immersion v : U ~ Y and a : U - ~0~ the map induced by
1 o h. We define := It is easy to verify that is lisse of rank

one on Ud := Y B UdlNaEi. Moreover, if a E Ud(Fq) then the action of the
geometric Frobenius on the stalk of at a is multiplication by Hence

Grothendieck’s trace formula yields

where F denotes the Frobenius and Fq the algebraic closure of Fq. For further
use we still mention

3.6 Lemma. The higher direct images are zero outside Ud for all
0 _

j > 0. The same holds also for the open immersion vI : E I -~ E I .

(3.7) We should also mention that Langlands [47] has given a formula, in terms
of principal-value integrals, for the principal parts of the Laurent expansions of

x) around its poles.

4. CONSEQUENCES OF THE EXPLICIT FORMULAS
Unless stated otherwise, we keep the notation of 1.1 and 1.3.1. When x is

a character of I~" we denote the induced character of R" also by x. We say a
property holds for almost all P if it holds for almost all completions of a number



field F (all data being defined over F). For any scheme V of finite type over a
field L C C, we denote by x(V) the Euler characteristic of V(C) with respect to
singular cohomology.
4.1 Degree of local zeta functions

(4.1.1) Because x) is a rational function of q-S we can consider its degree
which is defined as the degree of the numerator minus the degree

of the denominator (as polynomials in q-S ). If the hypothesis of theorem 3.4
holds, then it is clear from the explicit formula that 0. Clearly
the degree is  0 if and only if x) = 0.

(4.1.2) Proposition [12]. For almost all P, deg Zo (s, Xtriv) = 0. If moreover f
is homogeneous, then deg Z(s, deg f.

Proof. From theorem 3.4 it follows that

Hence 0. This proves the first assertion. The second

assertion follows from the first by the formula Z(s, x) - 

(4.1.3) When f(0) = 0 we proved [15], using the method of vanishing cycles
[22], that for almost all P and any character x of of order d we have

where Fo is the Milnor fiber of f at 0, Hi(Fo, denotes the component of
the cohomology on which the semi-simplification of the local monodromy acts
like x, and Frob is a suitable lifting of the Frobenius. In particular this implies
that deg Zo(s, x)  0 when there is no eigenvalue of the local monodromy of f
at 0 with order d.

4.2 The functional equation
(4.2.1) We denote by h’~e~ the unramified extension field of 7~ of degree e, and
put

where N denotes the norm. D. Meuser [61] has shown that Z(s, e, xtriv), as
function of sand e, is a rational function of q-es, al, ... , for some al, ... , ar E



C. In case of good reduction, 3.4 and 3.5.1 directly imply that this remains true
for Z(s, e, x) where x is any character of I(x. Because of this rationality we can
canonically extend Z(s, e, x) to a function on C x ZB ~0~. With this notation we
can state the following result of Meuser and Denef [17] (see also [62]).

(4.2.2) Theorem [17]. If f is homogeneous, then for almost all P we have the
functional equation Z(s, -e, x) - E ZB ~0~.

Idea of the proof. For a homogeneous polynomial it is possible to give an explicit
formula for Z(s, x) in terms of an embedded resolution of singularities (with good
reduction) of Proj I~ ~x~ ~ ( f (x) ) . This has the advantage that the EI become
proper. Then we can use the functional equation for the Weil zeta function of
the varieties EI to obtain the theorem when x is trivial. In the general case
we have to use Poincare duality for the sheaf Fx on EI n Ud (notations as in
3.5). This works since its cohomology equals compactly supported cohomology
because’ of lemma 3.6.

(4.2.3) The above functional equation takes an interesting form if Z(s, is

universal, meaning that there exists Z(u, v) E Q(u, v) with 
= for all e E l~ 1 {0~. This happens often when f is a relative

invariant of a reductive group (see 7.6). Note that the functional equation 4.2.2
takes the form = whenever is universal. It

was this form of the functional equation which was first conjectured by Igusa
[38]. His conjecture was based on extensive calculations with relative invariants
of prehomogeneous vector spaces.
4.3 Topological zeta functions

(4.3.1) To any f E C[x] and ~0~ Loeser and Denef [16] associate the
"topological zeta function"

where the notation is as in 1.3.1 (for a resolution of over It is a

remarkable fact that this expression does not depend on the chosen resolution.
Untill now the only known proof of this uses local zeta functions. To simplify,
assume f has coefficients in a number field F. Then, for almost all P, formulas


