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1. MACDONALD POLYNOMIALS, THE POSITIVITY
CONJECTURE

In 1988 Macdonald defined 2-parameter symmetric functions unifying the theory
of Hall-Littlewood and Jack polynomials ( c f . [M] , [Ml]).
We recall a variant of his construction (cf. [HI]). For a given positive integer n

we want to define symmetric functions indexed by partitions of n and with
coefficients in Q(q, t). We use the fact that symmetric functions (in infinitely many
variables) are polynomials in the Newton functions ~i ~~.

The Ha (X) are implicitly defined using dominance order and plethystic transfor-
mations.

For a symmetric function f(X) the plethystic transformation f (X ) ~ f(X[1 - q] )
is the unique morphism ... , ... ] to Q(q) ... , ~m, . , . ~ ] sending -~

~~(1- 
The dominance order of partitions, is

(p1,p2, ... , pn)  (q1,q2, ... ,qn), ~ ~k p1 +p2+...+pkq1+q2+...+qk.
Finally for a partition A its dual A’ is obtained exchanging rows and columns in its
Young diagram.

1.1. THEOREM - There exist unique symmetric functions Ha(X)
satisfying :

(1) q]) lies in the vector space over Q(q, t) generated by the Schur func-
tions S~ (X ), ~c > A.

(2) t]) lies in the vector space over Q(q, t) generated by the Schur func-
tions S~ (X ), ~c > a’ .

(3) In the expansion of Ha(X) through Schur functions, the coefficient of Sn is 1 .

~ 1 ~ I follow here Haiman’s approach 
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POSITIVITY CONJECTURE. - The coefficients of the expansion Ha (X ) through Schur
functions are polynomials in q, t with coe fficients positive integers.

For further discussion and a guid.e through the literature we refer to [HI].

2. n!-CONJECTURE

Since the work of Frobenius, the connection between symmetric functions and
representations of the symmetric group has been well understood. In particular it is
useful to associate to the irreducible representation indexed by a partition A the Schur
function Sa(X). Extending this by linearity one has a linear isomorphism x - F(x)
(called Frobenius character) between the space of characters of the symmetric group
on n letters and the space of symmetric functions of degree n.

With this convention suppose we have a bigraded representation of the symmetric
group and let be the corresponding bigraded character. Then we construct
the 2-parameter symmetric function, called its bigraded Frobenius character:

So, to prove the positivity conjecture one should construct, for each partition A, a
bigraded representation whose bigraded Frobenius character is the Macdonald poly-
nomial 

In 1991 Adriano Garsia and Mark Haiman, inspired by similar constructions for
the simpler case of q-Kostka polynomials ( c f . ~GP~ ), proposed such a construction.

Let R := ..., xn; ... , ~n~ be the polynomial ring in 2n variables.
A partition A of n will be always identified to a set of n points in the integral

lattice.

The n pairs A := = 1,..., n of numbers give (up to sign) the polynomial:

Consider the R module structure on R setting:

R/IÀ is the space spanned by all the derivatives of the polynomial Da.

n!-CONJECTURE ([GH]). - dim R/I03BB = dim Ya = n!
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We let the symmetric group S’n act on R := ..., xn; yl, ..., y~~ by the diagonal
action (or simultaneously on the x and y). Since Da is bihomogeneous and skew
symmetric, it is clear that va = R/Ia is a bigraded representation of the symmetric
group so:

SECOND CONJECTURE ([GH]). - The bigraded Frobenius character of V03BB is the Mac-
donald polynomial Ha (X ) .

Both conjectures have now been proved by Mark Haiman, his final results are in
[H2]. It has turned out that the most difficult part of the project has been to establish
the n!-conjecture.

The proof of the n!-conjecture is based on a deep property of the Hilbert scheme
of n-tuples of points in the plane. This connection has also allowed Haiman to solve
other conjectures on diagonal harmonics as we shall explain at the end ( c f . [H], [H3]).

In order to see how the Hilbert scheme enters, let us first make an elementary
remark.

Define a linear form TA on R as:

Proo f. - A polynomial pER is 0 if and only if (q . p) (o) = 0 for every q E R. Thus
p. Da = 0 if and only if q . (p. = 0, for every q. Since q . (p. Da) _ (qp) . Da
we have the claim. D

Remark that, if h, k is a pair of natural integers, external to the partition A we
have, for every i:

It follows that Ix contains the monomials for every such pair. In other words,
set JÀ to be the ideal of C[x, y~ generated by the monomials (h, and
Aa := C[x, Aa has dimension n and, as basis, the monomials (i, j) E ~.

Finally, identifying R = C[x, we have that is a quotient of 
The linear form TÀ factors through and it is antisymmetric. Any antisym-

metric linear form factors through antisymmetrization A®n ~ We have
dim 039Bn A03BB = 1, since dim A03BB = n, hence such a form up to scalar is unique.

Thus the n!-conjecture is equivalent to:

RANK CONJECTURE. - The form Ta(pq) on has rank n !.



It has turned out to be too difficult to analyze directly the ideal J;B, but rather one
must work more globally on Hn, the Hilbert scheme of all ideals I of codimension n
in ~~ . Hn comes together with the universal family

The projection map p : S - Hn is flat and F := p*®~ is the tautological vector
bundle F = ~ (I , C[x, ~~ ~ 1 ) }, a bundle of algebras of dimension n over Hn.
A fundamental theorem of Fogarty [F] states that the Hilbert scheme is smooth

of dimension 2n, from which it follows easily that it gives a (crepant) resolution of
singularities:

In the Hilbert scheme the ideals JÀ play a special role. In fact on C2 and hence
on Hn, acts a two dimensional torus iT :_ ~ (a, ,Q) ~ through (a, ~3) (x, y) :_ (ax, 
A fixed point is just a bihomogeneous ideal and one easily sees that these are exactly
the ideals Ja (indexed by partitions of n).

One uses always the fact that anyl stable closed subset of Hn contains a fixed
point.

Now we can globalize the rank conjecture. Consider the antisymmetrization T :
F®n -~ which induces a form T(ab) on the bundle 

2.4. LEMMA. - T has generically rank n!. The n!-conjecture is equivalent to the
statement that the form T has always rank n !. In this case is a bundle

of algebras each carrying the regular representation of Sn.

Proof. - In a generic point of the Hilbert scheme, the ideal I defines n-distinct
points and the algebra C[x, y]/ I = with the ei orthogonal idempotents.

It is easily seen that the kernel of T has, as basis, the elements eil Q9 ei2 ~ ~ ~ ~ Q9 ein
where the indices are not all distinct. Its complement is the regular representation
with basis eal Q9 e~2 ~ ~ ~ ~ Q9 ean, a E Sn.

If the rank is constant we must have a bundle of regular representations. The

set of points with rank n! is open dense and :Y stable, hence if the complement,
where rank  n! , is non empty it must contain a fixed point JÀ contradicting the n!

conjecture. D

Let now Bn be the sheaf of sections of p0n (a bundle of algebras) and In the
sheaf of ideals kernel of T.

We have:

Now we can define the subvariety Xn of which is the closure of its open
subset where all pi are distinct.



2.6. LEMMA. - Xn is defined by the sheaf of ideals The commutative diagram:

identifies Xn to the reduced fiber product.

Sketch of proof - The sheaf of ideals ~n restricted to the part of Hn consisting
of reduced subschemes, defines the set where all the pi are distinct. One obtains

immediately the first statement. In the commutative diagram, by construction, Xn is
a subvariety of the reduced fiber product Xn. On the regular part the fiber product
is reduced, so it is enough to show that Xn is irreducible. One sees this by induction
on n using the fact that the preimage under p, of a subscheme supported in a unique
point, is a point. D

2.8. THEOREM. - The kernel of T has constant rank if and only if Xn is Cohen-

Macaulay and Gorenstein. In this case = p*(~(Xn)).
Xn is Cohen-Macaulay if and only if the morphism p : Xn -~ Hn is In this

case = 

Proof. - Some parts are fairly straightforward. Let us see how the Gorenstein prop-
erty plays a role. Assume Xn is Cohen-Macaulay and Gorenstein. Take a point
IÀ E Hn we have seen that there is a unique point in p-1(la). The coordinate ring Ba
of the sheme theoretic fiber is the local ring in this point modulo a regular
sequence, hence by the Gorenstein assumption it has a 1-dimensional socle (a unique
minimal ideal). It must necessarily be Sn stable and hence carry the sign represen-
tation, then the kernel of T on Ba is an ideal which, if non 0, must contain the sign
representation. This is clearly absurd so the form T(ab) is non degenerate on the n!
dimensional algebra BÀ.

The converse follows a similar line. D

3. THE G-HILBERT SCHEME

It is quite interesting (and useful) to reinterpret the previous discussion as follows.
If we have that the map p : Xn - Hn is flat, we also have that each fiber of p is a

subscheme of length n! in From the theory of the Hilbert scheme we have then
a classifying map i : Hn --~ Hn!,2n where is the Hilbert scheme parameterizing
subschemes of length n! in c2n. On the other hand, the open part of Hn corresponding
to subschemes with n-distinct points parametrizes the generic orbits of Sn in c2n.

In general, given a finite group G acting faithfully on an irreducible quasi-projective
variety X we have the following construction of Ito and Nakamura [IN]. Consider the



open set X° (the union of the generic orbits) over which G acts freely. The set of
such orbits X°~G can be identified with a locally closed subset of the Hilbert scheme

of finite subschemes of length (G~ in X. One sees easily that this is in fact
open in the subscheme of G fixed points of 

The closure HG,x of XO /G in is an irreducible component of the subscheme
of G-stable finite schemes for which the coordinate ring carries the regular represen-

By continuity the universal family restricted to HG,x is a flat family of G-stable
finite schemes for which the coordinate ring carries the regular representation.

For a G-variety X this closure of X°~G will be called the G-Hilbert scheme and
denoted HG,x. It comes equipped with a proper birational morphism p : 
X/G. It seems to be quite interesting to determine when HG,x is smooth, and hence
p a canonical resolution of singularities ( c f . [BKR]). It is not hard to prove that, in
our setting, from the flatness of p : Xn -~ Hn follows that Hn is identified to the
G-equivariant Hilbert scheme of c2n and Xn to its universal family.

4. Xn IS COHEN-MACAULAY AND GORENSTEIN

The main theorem proved by Haiman in [H2], from which he deduces both the n!
and the Macdonald positivity conjectures, is:

4.1. THEOREM. - Xn is Cohen-Macaulay and Gorenstein.

The idea of the proof is to use induction on n and the fact that, on the points H°
of Hn which do not define n coincident points, we have a local structure, analytically
a product

By induction if X~ is the open set of Xn lying over then X~ is Cohen-Macaulay
and Gorenstein, moreover = 0, Vi > 0.

More precisely one has to use the flag Hilbert scheme Hn,n-1 and the corresponding
variety Xn,n-i and exploit the birational map Xn.

Set theoretically Hn,n-l is made of pairs of ideals

(2) These subschemes are called G-clusters in [BKR].



We have 3 natural morphisms:

From a result of Tikhomirov and also Cheah ( c f . [Ch]) we have:

4.2. THEOREM. - Hn,n-1 is smooth and Hn,n-1 q~ Hn x (C2 has as image the
universal family ~ and it is a resolution of the singularities of ~.

Composing r with the morphism Hn-i ~ we obtain

At this point define Xn,n-i as reduced fiber product:

On the varieties Xn,n-1, Xn, Hn,n-l, Hn we have standard line bundles. On Hn
define ®Hn (1) as the maximal exterior power of the tautological bundle and ~~n (k) =

On we have the line bundles obtained by pull-back through the 2
projections, ~ Hn, Hn,n-l -~ we set:

On Xn,n-1, Xn define also sheaves by pull-back from Hn,n-l, Hn.
We can now reformulate Theorem 4.1 in a more precise form:

4.4. THEOREM

T (n) Xn is Cohen-Macaulay, Gorenstein with dualizing sheaf 
U(n) is Cohen-Macaulay and Gorenstein with dualizing sheaf ~(o, -1).

The technique of the proof will be to follow the sequence of implications

To proceed we must compute some canonical sheaves (cf. [H2], §3.6):

4.5. THEOREM. - For Hn,n-l, Hn we have as canonical sheaves:

It is necessary first of all to prove:



4.6. LEMMA. - Suppose by induction that Hn-l is flat, the diagram

is a fiber product.

Proo f . - The statement claims that, forming the fiber product

we have that Y is reduced and thus it coincides with 

In order to prove it we use the fact that p is flat and finite and so also p’ is flat

and finite, thus Y is Cohen-Macaulay and it suffices to prove that it is reduced in

codimension 0, which one obtains restricting to the regular part of the diagram. D

Now prove that T (n -1) ~ U(n).
From the previous Lemma it follows that Xn,n-l is Gorenstein, moreover the dual-

izing sheaf relative to the morphism is the pull-back of the dualizing
sheaf relative to the morphism Hn-l which is ®(1, -1) while the dualizing
sheaf of Xn-i is by induction ®(-l, o) thus the tensor product is B(o, -1).
Now the implication U(n) ~ T (n).
One has to analyze the morphism g : Xn. The main Theorem follows

from general principles from the proposition:

4.7. PROPOSITION

This proposition is based on a basic Lemma and some geometric considerations.

4.9. LEMMA. - Given a proper morphism g : Y --~ X between algebraic varieties
over C. Suppose we have given m global functions zl, ..., zm on X and let Z be the

subvariety of X where they vanish and U := X - Z the complement.
Assume the following conditions:

(1) The zi form a regular sequence in every local ring ®X,P, P E Z.
(2) The zi form a regular sequence in every local ring ®Y,Q, Q E 
(3) Every fiber of g has dimension  m - 1 .

(4) On the open set U the canonical morphism OX ~ Rg*OY is an isomorphism,
then the canonical morphism OX ~ Rg*OY is an isomorphism (everywhere).



This Lemma has a fairly simple cohomological proof ([H2], Lemma 3.8.5). The

hard point is to apply this Lemma to the morphism g. We choose as sequence zi the
n - 1 functions yi - y2, ... , y1 - yn and we need to verify the hypotheses (1)-(4).

The most difficult is (1). ..
In any case both for (1) and (2) one proves the stronger statement that yl, y2, ... , yn

is a regular sequence.
One observes:

For (2) by induction all the local rings are Cohen-Macaulay, one must verify that
the codimension of the variety given by the equations yi = y2 = ~ ~ ~ = yn = 0 is n.

It is enough to do it for Hn,n-l, since Hn,n-l is finite.
For (3) it is enough to analyze the morphism Hn.
The fiber has maximal dimension on the fixed points, i.e. the ideals Ja, and consists

of the ideals of dimension 1 of By direct inspection one sees that this is
a projective space of dimension d 2014 1 where d is the number boundary cases of the
diagram. For n > 3 the inequality is easy while for n x 3 one must prove the Lemma
directly.

To prove (4) we see that on U the morphism is locally isomorphic to a product of
two morphisms g : Xk,k-i x Xh. Thus we can proceed by induction.

(1) is the difficult part.
First a reduction: Presenting Hn and Xn as blow-ups.
First Hn.
Let R := (~~~1, ... , zn ; yl, ... , yn] be the polynomial ring in 2n variables:

the invariants and the alternating elements under the diagonal action of Sn (Ca denotes
the sign of the permutation). Finally let I := AR be the ideal of R generated by A.
We add an indeterminate t and consider the two graded algebras:

One acts with Sn on R[t] by the diagonal action on R and acting on t with the
sign representation.

4.10. THEOREM. - a) U = 
b) Hn = Proj(Un), Xn = Proj(Vn ) .

Sketch of proo f. - It is well known that Hn can be described as follows ( c f . ~N~ ) .
Consider the variety Z of triples (X, Y, v) where X, Y are two n x n matrices with

X Y = YX , v E C~ a vector. Define Zo to be the open set of Z where the vectors
X?Y3v generate the space (Cn.

Zo is smooth, the group GL(n, C) acts freely on Zo and finally Hn = Zo/ GL(n, C).
On Z many conjectures are open but we know that it is irreducible and that pairs

of diagonalizable matrices are dense in Z.



Construct the quotient in two steps: Hn = Zol SL(n, C), Hn = we see

that Zo/ SL(n, C) is an open set of the variety Z// SL(n, C).
By definition Z// SL(n, C) is the spectrum of the ring of invariants and, by classical

invariant theory such invariants are generated by:

where M, Mi denote monomials in the matrices X, Y and [Miv, M2v,..., Mnv~ de-
notes the determinant of these vectors.

By the previous remarks we can compute this ring by restricting it to pairs of diago-
nal matrices and then it is easy to see that it is identified to Un. Moreover the open set

Zo~ SL(n, C) is the part where at least one of the determinants [M1v, M2v,..., 
is non 0 from which the statement easily follows.

As for Xn one has clearly a commutative diagram:

comparing it to 2.7 one has the claim. 0

At this point one has the next reduction:

In order to prove condition (1) it suffices to prove that, for every d the ideal Id is
a free module over the polynomial ring ..., 

This last statement will be further reduced to a more combinatorial statement. In

order to explain it we must introduce some new objects, the polygraphs.
Thus, given a positive integer R let us denote by ~.~~ the segment ~1, 2, ... , .~~ .
Given a function f : ~.~~ - [n] consider the induced linear map 1r f : ((~2)n - (~2)e,

and its graph W f C (C2)n x ((~2)~.
The union Z ( n, R) : := U fW f as f varies on the set of all functions f : ~.~~ - [n] is

a polygraph. Clearly on this polygraph operate various groups, in particular we will
use the group Sf, and its subgroups, which permutes functions and graphs.

Call xi, gz the coordinates on (c2)n and ai, bi those on (~2)~.
The coordinate ring of is a quotient R(n, .~) :_ g2, aj , ~).
We consider next R = nd and decompose

the group Sn operates permuting separately the coordinates of the factors and on the
ring R(n, ~). Consider the subspace R(n, of antisymmetric elements (with respect
to all factors Sn ) .

4.12. LEMMA. - There is a canonical isomorphism as R modules of and Id.



Proof - Let f o : [f] - [n] be defined as + i ) = i, i x n, 0 x k  d call

Wfo = (c2)n the associated graph. The restriction of functions of R(n, .~) to such a
space is a morphism of R modules and sends - yi ; it is easily seen
that it maps R(n, surjectively to Jd.

It is enough to prove that it is also injective. In fact an antisymmetric function
vanishes on W f if f(kn + i) = f(kn + j), Any other
function is in the orbit of f o relatively to By antisymmetry a function in R(n, .~)~
is determined completely by its values on Wfo. D

So finally let us show that everything will follow from the final key statement:

4.13. THEOREM. - R(n, .~) is a free module on the polynomial ring ..., 

Assume the last statement. Decomposing R(n, ~) into isotypic components with
respect to Sn we see that R(n, ~)~ is a direct summand as module and so from the

freeness of R(n, ~) follows also that of Id isomorphic to R(n, 

At the end of this long sequence of reductions we have to face Theorem 4.13.
This is proved by Haiman with a very long and complex induction only using a very
careful bookkeeping and commutative algebra which occupies more than 30 pages
of his paper. Rather than try to discuss this highly technical point we prefer to
discuss some further developments. Nevertheless one should point out that, from the
considerations that we will see in the next paragraph (Theorem 5.1), the appearence
of polygraphs and their properties are geometrically natural.

5. DIAGONAL HARMONICS

The space of diagonal harmonics Dn can be defined as the subspace of poly-
nomials in ..., xn; yl, ..., yn~ solutions of the system of differential equations

= 0 where P runs over all polynomials without constant term
which are symmetric with respect to the diagonal action of Sn.
Dn can also be identified with the polynomial ring ... , zn ; yl, ..., yn~ modulo

the ideal generated by all Sn invariant polynomials without constant term.
Garsia and Haiman discovered a series of interesting conjectures mixing algebra,

combinatorics and geometry on the space Dn, which is a bigraded, finite dimensional
representation of Sn. The simplest of which describe its dimension as a vector space
and its structure as representation.



(2) As a representation Dn is isomorphic to the permutation representation on the
set of parking functions tensored by the sign representation (3) .

More precise conjectures on the bigraded character can be found in [GH1], in

particular a rather remarkable expression for its bigraded Frobenius character.
One can attack these conjectures using the Lefschetz fixed point formula of Atiyah-

Bott ( c f . [AB]).
The idea is to prove that the space of diagonal harmonics can be identified with

the global sections of the vector bundle restricted to the subvariety of Hn
consisting of subschemes supported at 0 and then compute its character by localization
principles.

This vector bundle is acted upon by the torus T and the Lefschetz fixed point
formula of Atiyah-Bott can be applied provided one knows the vanishing of suitable
cohomology groups. Finally these vanishing theorems can be deduced by applying
the theory of Bridgeland King Reid to Xn (this can be done because of the solution
of the n!-conjecture). Their theory in our case establishes an equivalence of derived
categories the BKR correspondence (generalized McKay correspondence) between the
derived category of coherent sheaves on Hn and that of Sn-equivariant modules
over R.

The announced geometric interpretation of polygraphs and their property is:

5.1. THEOREM. - Under the BKR correspondence the polygraph R(n, ~) corresponds
to the bundle F~ .

The locus V(?/i,... Yn) in Xn is a complete intersection.

This provides the requested vanishing theorems.
Once all of this is done one obtains finally an explicit formula, in term of Macdonald

polynomials of the bigraded character of Dn ( c f . [H3], 3.10 and 3.11). In particular
the two previous conjectures follow from this formula.

Final comments

The theory we have sketched applies to the sum of two copies of the standard
reflection representation of Sn. It thus suggests possible generalizations to other
reflection groups.

At the moment it is not very clear what can be generalized and in which form,
as the question of understanding which G-Hilbert schemes are smooth is completely
mysterious. Haiman has made some computations for type Bn.

(3)n-people choose a spot out of n linearly ordered parking spots. They must reach their chosen
spot and, if free park in it, otherwise reach the first free spot and park. The choice made is a parking
function if, no matter in which order the people arrive they always park.
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