Richard Becker

Some consequences of a kind of Hahn-Banach’s theorem

<http://www.numdam.org/item?id=SC_1977__17_1_A2_0>
SOME CONSEQUENCES OF A KIND OF HAHN-BANACH'S THEOREM

by Richard BECKER

Abstract. - The aim of this work is to give some consequences of a theorem of H. DINGES used by M. F. SAINTE-BEUVE.

Preliminaries

1. THEOREM. - Let X be an ordered vector space, and p an extended sub-linear functional on X, such that $p(x) \in \mathbb{R} \cup \{+\infty\}$ for each $x \in X$, and $p(x) \leq 0$ for each $x \leq 0$. Let Y a linear subspace of X, and f a linear form on Y majorized by p. There exists a linear form on $Z = \{x ; \exists x_1, x_2 \in Y \text{ with } x_1 < x \leq x_2\}$ which extends f and is majorized by p on Z ([5], [11]).

What is needed concerning conical measures can be found in [3] (§ 30, 38, 40). Notation not included in [3]. In this paper, C will be the class of weakly complete convex cones, not necessarily proper.

2. Summary. - Part I is devoted to conical measures. We generalize specially (proposition 12) the theorem of Cartier-Fell-Meyer ([10] p. 112) concerning dilations of measures on a metrizable convex compact set. Positive measures on a metrizable convex compact set can be considered as conical measures on a proper convex closed cone of \mathbb{R}^N. Here, we will consider arbitrary conical measures on \mathbb{R}^N.

Part II (A) extends a result of STRASSSEN ([8], p. 300-301), from which the theorem of Cartier-Fell-Meyer can be derived. We weaken, here, a condition of compactness (proposition 21). Part II (B) extends some results about "theory of balayage" ([8], p. 294, 297). This theory studies cones of continuous functions on a compact set containing a strictly positive function. We weaken this condition.

Part I : The case of conical measures.

I (A). Conical measures on an arbitrary weak space.

Recall the following proposition which enlightens the definition of the order $<$.

3. PROPOSITION. - Let E a complete weak space, and $\Gamma \subseteq E$ a convex cone of C. For each $f \in h(E)$, such that $f|\Gamma$ is sub-linear, there exist $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$, such that we have on Γ, $f = \text{lub}(\lambda_1, \lambda_2, \ldots, \lambda_n)$.

Proof. - We can suppose E of finite dimension.
There exist \(u_1, \ldots, u_p \in E' \) such that, for each \(x \in E \), \(f(x) \) is equal to one of the \(u_p(x) \). Hence, for each pair \(x, y \in \Gamma \), there exist \(p_{x,y} \), an integer \(\leq p \), such that

\[
f(x) = u_{p_{x,y}}(x), \quad \text{and} \quad f(y) \geq u_{p_{x,y}}(y).
\]

For each \(x \in \Gamma \), let \(v_x = g_{\lambda \in \mathbb{R}} u_{p_{x,y}} \). The family \((v_x)_{x \in \Gamma} \) is finite, and we have on \(\Gamma f = \inf_{x \in \Gamma} (-v_x) \); as \(-v_x \in S(E) \), we can conclude with the help of the elementary form of the theorem of Hahn-Banach because dimension of \(E \leq \infty \).

4. PROPOSITION. - If \(E \) is a complete weak space, and \(\mu \in \mathbb{M}^+(E) \), then, for each \(\lambda \in \mathcal{E}' \) with \(\lambda \neq 0 \), the two following properties are equivalent.

1° \(\forall f \in \mathcal{H}^+(E) \), we have \(\mu(f) = \lim (\mu(f \wedge n\lambda^+)) \) when \(n \to \infty \).

2° \(\exists m, \sigma \)-additive and positive functional on the tribe on \(e = \mathcal{A}^1(1) \) generated by \(h(E)|_e \), such that \(\mu(f) = m(f|_e) \), for each \(f \in h(E) \).

If \(\mu \) satisfies to 1° and 2°, then each \(\lambda \in \mathbb{M}^+(E) \), with \(\lambda < \mu \), satisfies also to 1° and 2°.

Proof. 1° and 2° are equivalent on account of ([3], 38.13).

Proof that \(\lambda \) satisfies to 1°. Note that \(h(E) = S^+(E) - S^+(E) \). Let \(f \in S^+(E) \), we have

\[
0 \leq \lambda(f - f \wedge n\lambda^+) \leq \lambda((f - n\lambda)^+) \leq \mu((f - n\lambda)^+) \to 0 \quad \text{when} \quad n \to \infty,
\]

hence

\[
\lambda(f) = \lim(\lambda(f \wedge n\lambda^+)) \quad \text{when} \quad n \to \infty.
\]

5. PROPOSITION. - Suppose \(E \) is a weak space, and \(\lambda, \mu \in \mathbb{M}^+(E) \). If \(\lambda < \mu \), then, for each sequence \(\lambda_1, \lambda_2, \ldots, \lambda_n \) of \(\mathbb{M}^+(E) \) such that \(\lambda = \sum_1^n \lambda_i \), there exists a sequence \(\mu_1, \mu_2, \ldots, \mu_n \) of \(\mathbb{M}^+(E) \) such that \(\mu = \sum_1^n \mu_i \), and \(\lambda_i < \mu_i \) for \(i = 1, 2, \ldots, n \).

Proof. - For each \(f \in h(E) \), let \(\hat{f} \) such that :

1° \(\hat{f} = g_{\lambda \in \mathbb{R}} (\lambda \wedge f) \) if \(f \) is majorized by an element of \(E' \).

(In fact, on account of [1] (chap. II, § 7, exercice 24), we have \(-\hat{f} \in S(E) \).)

2° Otherwise, \(\hat{f} = + \infty \) on \(E \).

For each \(\nu \in \mathbb{M}^+(E) \), let \(p_\nu \) such that :

1° If \(\hat{f} \neq + \infty \), \(p_\nu(f) = g_{\lambda \in \mathbb{R}} (\nu(g) ; -g \in S(E), g \geq f) \). We have \(p_\nu(f) \in \mathbb{R} \).

2° If \(\hat{f} = + \infty \), \(p_\nu(\hat{f}) = + \infty \).

For \(i = 1, 2, \ldots, n \), let \(p_i = p_\nu_i \).

On the space \((h(E))^n \), let us consider the functional \(p \), such that

\[
(f_i)_{1 \leq i \leq n} \mapsto p((f_i)) = \sum_1^n p_i(f_i).
\]
p is sub-linear with values in $\mathbb{R} \cup \{+\infty\}$, and

\[(f_i \leq 0, \text{ for } i = 1, 2, \ldots, n) \implies (p(f_i)) \leq 0.\]

Let μ the linear form on the diagonal of $(h(E))^n$, such that

$$
\mu((f, f, \ldots, f)) = \mu(f).
$$

μ is majorized by p. As each element of $(h(E))^n$ is majorized by an element of the diagonal, we can apply the version of the theorem of Hahn-Banach recalled in 1. μ has an extension $\tilde{\mu} \in (h(E))^n_+$ with $\tilde{\mu} \leq p$. We can write $\tilde{\mu} = (\mu_i)_{1 \leq i \leq n}$ with $\mu_i \in h(E)^n_+$, for $i = 1, 2, \ldots, n$.

The μ_i are convenient.

6. PROPOSITION. - Suppose E is a complete weak space, and $\lambda, \mu \in M^+(E)$. The two following properties are equivalent.

1° $\lambda < \mu$.

2° There exists a conical measure $\pi \in M^+(M^+(E) \times M^+(E))$ carried by the cone $B = \{(\epsilon_x, \nu); x \in E \text{ and } \epsilon_x < \nu\}$, such that $r(\pi) = (\lambda, \mu)$.

Proof. - For simplification, we will write sometimes M instead of $M(E)$ and M^+ instead of $M^+(E)$.

1° \implies 2°: For each sequence $\lambda_1, \lambda_2, \ldots, \lambda_n$ satisfying the hypothesis of proposition 5, let us choose a sequence $\mu_1, \mu_2, \ldots, \mu_n$ satisfying the conclusion of 5.

We say that a sequence $s' = \lambda'_1, \lambda'_2, \ldots, \lambda'_m$ is finer than a sequence $s = \lambda_1, \lambda_2, \ldots, \lambda_n$ if, and only if, there exists a partition of $\{1, 2, \ldots, m\}$ into n subsets p_1, p_2, \ldots, p_n, such that $\lambda_i = \sum_{j \in p_i} \lambda'_j$ for $i = 1, 2, \ldots, n$.

Let U_λ be the set consisting of all the (finite) sequences finer than s. The family of sets U_λ is a filter basis over $U(\lambda)$ where (λ) means the sequence λ.

Let φ be the application

$$
\varphi(s) = \pi_s = \sum_{i=1}^n \epsilon_i(\epsilon_x(\lambda_i), \mu_i),
$$

we have $\pi_s \in M^+(M^+ \times M^+)$. The family of sets $\varphi(U_\lambda)$ is a filter basis over $M^+(M^+ \times M^+)$. We have $r(\pi_s) = \sum_{i=1}^n (\epsilon_i(\epsilon_x(\lambda_i), \mu_i))$.

Each element of $h(E)^+$ is majorized by an element of $S(E)^+$, and for each $f \in S(E)^+$, we have

$$
\sum_{i=1}^n (\epsilon_i(\epsilon_x(\lambda_i), \mu_i))(f) = \sum_{i=1}^n f(\lambda_i) \leq \sum_{i=1}^n \lambda_i(f) = \lambda(f).
$$

Hence the filter basis $\varphi(U_\lambda)$ has at least a cluster point, let π. The element π answers the question, since each π_s is carried by B, and we have

$$
r(\pi) = \lim(r(\pi_s)) = (\lambda, \mu).
$$

2° \implies 1°: If $\pi \in M^+(M^+ \times M^+)$ with $r(\pi) = (\lambda, \mu)$, and if π is carried by B, then for each $f \in S(E)$, we have $\pi((-f, f)) \geq 0$, since the element $(-f, f)$
of \(h(E) \times h(E) \) is \(\geq 0 \) on \(B \). Hence we have \(\lambda < \mu \).

7. **Remark.** — We can prove 6 with the method of [10] (p. 108) (and without the theorem of § 1) by looking at the convex closure of the set
\[
\{(\varepsilon_x, \nu) ; x \in E \text{ and } r(\nu) = x\}
\]
in \(M^+ \times M^+ \). Then § 5 can be obtained for \(\mathbb{R}^n \) as in [10] (p. 112) and in the general case by a projective limit argument.

8. **Definition** (of a pure pair and a pure measure). — Suppose \(\lambda, \mu \in M^+(E) \). We say the pair \((\lambda, \mu) \) is pure if, and only if,
\[
(\mu' \in M^+(E) \text{ and } \mu' \leq \mu, \lambda < \mu') \text{ involves } (\mu' = \mu).
\]
Suppose \(\lambda \in M^+(E) \). We say that \(\lambda \) is pure, when the two following equivalent condition are fulfilled.

1° \((\varepsilon_{x}(\lambda), \lambda) \) is a pure pair.
2° \(K_{\lambda} \) admits 0 as an extremal point.

Proof.
1° \(\implies \) 2°: Suppose 2° is false. Let \(\lambda_1 \leq \lambda \), and \(\lambda_2 \leq \lambda \) with \(r(\lambda_1) = -r(\lambda_2) \neq 0 \). If \(\lambda_0 = \lambda - (\lambda_1 + \lambda_2)/2 \), we have \(0 \leq \lambda_0 \leq \lambda \), \(\lambda_0 \neq \lambda \), and \(r(\lambda_0) = r(\lambda) \), then \((\varepsilon_{x}(\lambda), \lambda) \) is not a pure pair.

2° \(\implies \) 1°: Suppose \(\mu \leq \lambda \) with \(\mu \geq 0 \) and \(r(\mu) = 0 \). Let \(\mu = \mu_1 + \mu_2 + \cdots + \mu_n \) be any decomposition of \(\mu \) where \(\mu_i \geq 0 \). We have \(\mu_i \in K_{\lambda} \), and \(\sum_{1 \leq i \leq n} r(\mu_i) = 0 \), hence \(r(\mu_1) = 0 \) for \(i = 1, 2, \ldots, n \). Then \(\mu = 0 \).

9. **Example.** — In the cartesian product \(\mathbb{R}^2 \), let \(a, b, c, d \) be the consecutive vertices of a square of center 0. If
\[
\lambda = \varepsilon_a + \varepsilon_b + \varepsilon_c + \varepsilon_d + \varepsilon_{-(c+d)},
\]
\[
\lambda_1 = \varepsilon_a + \varepsilon_b + \varepsilon_c + \varepsilon_d,
\]
\[
\lambda_2 = \varepsilon_c + \varepsilon_d + \varepsilon_{-(c+d)},
\]
we have \(r(\lambda_1) = r(\lambda_2) = 0 \), and \((\lambda - \lambda_1), (\lambda - \lambda_2) \) are pure.

10. **Proposition.** — Suppose \(E \) is a complete weak space, and \(\lambda, \mu \in M^+(E) \) with \(\lambda < \mu \). Then, the three following properties are equivalent.

1° The pair \((\lambda, \mu) \) is pure.
2° For each \(\pi \in M^+(M^+ \times M^+) \), representing \((\lambda, \mu) \) according to § 6 and carried by the cone \(B \), then the restriction \(\pi_0 \) of \(\pi \) to the cone \(A = \{(0, \nu) ; \nu \in M^+(E) \text{ and } r(\nu) = 0\} \) is equal to zero.

3° Each \(\pi \in M^+(M^+ \times M^+) \) representing \((\lambda, \mu) \), and carried by the cone \(B \), is carried by the cone \(B_\lambda = \{(\varepsilon_x, \nu) ; x \in E, r(\nu) = x, \nu \text{ is pure}\} \).

Proof.
1° \Rightarrow 2°: Suppose $2°$ is false. If π represents (λ, μ) with $\pi_0 \neq 0$ (for the definition of π_0, see [3], 30.8), we have $r(\pi_0) = (0, \nu)$ with $\nu \neq 0$ and $r(\nu) = 0$.

For each $f \in S(E)$, we have $(-f, f) \geq 0$ on B. Hence

$$v(f) = \pi_0((-f, f)) \leq \pi((-f, f)) = -\lambda(f) + \mu(f)$$

Therefore $\lambda < \mu - \nu$, and (λ, μ) is not pure.

2° \Rightarrow 3°: We can write $\pi = \lim_{\mathcal{U}} \sum \varepsilon(\varepsilon_x, \nu)$ with $(\varepsilon_x, \nu) \in B$ where \mathcal{U} is an ultrafilter.

For each $\nu \in \mathbb{N}^+(E)$, let us choose $p_\nu \in \mathbb{N}^+(E)$ such that:

(a) p_ν is pure,
(b) $p_\nu \leq \nu$,
(c) $k.p_\nu = p_{k\nu}$ for any $k \geq 0$.

We will prove that $\pi = \lim_{\mathcal{U}} \sum \varepsilon(\varepsilon_x, p_\nu)$.

We have

$$(\lambda, \mu) = (\lambda, \lim_{\mathcal{U}} \sum p_\nu) + (0, \lim (\nu - p_\nu)).$$

On account of the hypothesis, we have $\lim_{\mathcal{U}} \sum (\nu - p_\nu) = 0$, hence

$\lim_{\mathcal{U}} \sum \varepsilon(\varepsilon_0, \nu - p_\nu) = 0$. For each $f \in S(\mathbb{R} \times \mathbb{R})$, we have

$$f(\varepsilon_x, p_\nu) - f(0, p_\nu - \nu) \leq f(\varepsilon_x, \nu) \leq f(0, \nu - p_\nu) + f(\varepsilon_x, p_\nu).$$

As we have $\lim_{\mathcal{U}} \sum \varepsilon(\varepsilon_0, \nu - p_\nu) = 0$, then $\pi(f) = \lim_{\mathcal{U}} \sum f(\varepsilon_x, p_\nu)$. Therefore π is carried by B_p.

3° \Rightarrow 1°: Suppose $1°$ is false. We have $(\lambda, \pi) = r(\varepsilon(\lambda, \omega) + \varepsilon(0, \beta))$ with (λ, ω) pure, and $(0, \beta) \in A$ with $\beta \neq 0$. Therefore $\varepsilon(0, \beta)$ is not carried by B_p.

11. Example (G. Choquet). - In \mathbb{R}^2 suppose C_1 and C_ρ are the circles (for the classical distance) of center 0 with radius 1 and $\rho > 1$. For each $x \in C_1$, let $x_1, x_2 \in C_\rho$ so that (x_1, x_2) is tangent to C_1 at x. Let dx be the Haar measure on C_1. We have

$$\int_{C_1} (\varepsilon_{x_1} + \varepsilon_{x_2}) \, dx = \rho' \int_{C_1} \varepsilon_x \, dx \quad \text{(with } \rho' > 1)$$

as conical measures.

The pair $(\varepsilon_x, \varepsilon_x + \varepsilon_{x_2})$ is pure for each $x \in C_1$, but the resultant of

$$\int_{C_1} \varepsilon(\varepsilon_x, \varepsilon_x + \varepsilon_{x_2}) \, dx$$

is the pair $(\int_{C_1} \varepsilon_x \, dx, \rho' \int_{C_1} \varepsilon_x \, dx)$ which is not pure since $\rho' > 1$.

12. Proposition. - Suppose $\lambda, \mu \in M^+(\mathbb{R}^n)$ with $\lambda < \mu$, and the pair (λ, μ) is pure. Then, there exist:
1° a K_0 of $(\mathbb{R}^N \setminus \emptyset)$, let X such that each half-line issued from 0 intersects X into at most one point.

2° a Radon measure Λ on X.

3° a Borel application $x \mapsto \mu_x$ defined on X where μ_x is a Radon measure on X such that $r(\mu_x) = x$.

And we have:

(a) Λ is a localization of λ (Note that Λ is unique when X is given).

(b) $\mu = \int_X \mu_x \, d\Lambda(x)$.

Proof (with the notations of the proof of § 6). - We had

$$\pi_s = \frac{1}{1} \varepsilon(\varepsilon_x(\lambda_{s}), \mu_1).$$

For each $n \in \mathbb{N}$, let x_n be the function n-th coordinate on \mathbb{R}^N. We have

$$\pi_s(|x_p|, |x_p|) \leq \lambda(|x_p| + \mu(|x_p|) \leq 2\mu(|x_p|).$$

Let λ be the affine l. s. c. function defined on $\mathbb{M}^+ \times \mathbb{M}^+$ by

$$\lambda(\alpha, \beta) = \sum_p (\alpha \beta| |x_p|) / \varepsilon p 1 \mu(|x_p|).$$

We have

$$\lambda(\pi_s) = \sum_p \pi_s(|x_p|, |x_p|) / \varepsilon p 1 \mu(|x_p|) \leq 1 / 2 \varepsilon \leq 1.$$

π has a localization by a Radon measure m on a cap K of $\mathbb{M}^+ \times \mathbb{M}^+$, with $K = \{(\alpha, \beta) ; \alpha, \beta \in \mathbb{M}^+, \lambda(\alpha, \beta) \leq 1\}$. Moreover m can be assumed to be carried by the cone B.

Let \mathbb{A} be the l. s. c. function defined on \mathbb{R}^N by $\mathbb{A}(x) = \lambda(\varepsilon_x, \varepsilon_x)$. For each $n \in \mathbb{N}$, let $K_n = \{(\varepsilon_x, \alpha) ; (\varepsilon_x, \alpha) \in K, 1/(n+1) < \mathbb{A}(x) \leq 1/n\}$. Let m_n be the restriction of m to K_n. We have $m = \sum m_n$ on account of § 10, since (λ, μ) is a pure pair. Let π_n be the conical measure on $\mathbb{M}^+ \times \mathbb{M}^+$ localized by m_n.

Let m'_n be the Radon measure on $(n + 1)K$ such that, for each continuous function f on $(n + 1)K$, we have

$$m'_n(f) = \int_K \mathbb{A}(x) f(\varepsilon_x / \mathbb{A}(x), \alpha / \mathbb{A}(x)) \, dm_n(\varepsilon_x, \alpha),$$

then m'_n localizes π_n.

Suppose p is the projection on the first factor of the product $\mathbb{M}^+ \times \mathbb{M}^+$, then $p(m'_n)$ is carried by $K = \{\varepsilon_x ; x \in \mathbb{R}^N \text{ with } \mathbb{A}(x) = 1\}$. K is a Borel set because \mathbb{A} is l. s. c., moreover K intersects each half-line issued from 0 in at most one point.

Suppose $x \mapsto m'_n$ is a disintegration of m'_n with respect to p ([2], p. 58).

Then each m'_n has a resultant which is a conical measure ν'_n on \mathbb{R}^N, and we have $\mu(\nu'_n) = x$.

Now $\Lambda = \sum_n p(m'_n)$ can be seen as a Radon measure on a K_0 subset X_Λ of K. We
can write, for each $n \in \mathbb{N}$, $p(m_n) = u_n \lambda$ where u_n is a Borel function on X_λ. We have $\sum_n u_n = 1$, λ-a.e.

Recall that λ represents λ, and that $\mu = \sum_n \int \nu_x d(p(m_n))$ (equality of conical measures), then we have $\mu = \int (\sum_n u_n \nu_x) d\lambda$. Therefore $\mu_x = \sum_n u_n \nu_x$ exists as a conical measure λ-a.e., and we have $r(\mu_x) = x$.

On account of [3] (38.8), there exists a compact subset H of \mathbb{R}^N with $H = \bigcap_{k=1}^\infty (-k, k)$ where $k_n > 0$, such that μ is localizable on H by a Radon measure.

For simplification we shall use the same notation for μ_x, and its unique ([7], prop. 2.13) localization on the set $E(H) = \{x ; x \in H, \forall k > 1, kx \notin H\}$. As μ_x is a Daniell integral on $\mathbb{R}(\mathbb{N})$ ([3] 38.13), and since

$$E(H) = \{x ; \text{lub}(|x|/k_n) = 1\},$$

then ([9] prop. II.7.1) μ_x can be extended to a σ-additive measure, called also μ for simplification, on the tribe \mathcal{C} of $E(H)$ generated by the closed half-spaces containing 0. Recall we know that, for each $f \in h(\mathbb{R}^N)$, the map $x \mapsto \mu_x(f)$ is Borel-measurable. Then, for each $e \in \mathcal{C}$, we have $\mu(e) = \int \mu_x(e) d\lambda$.

Let X_{μ} be a K_σ subset of $E(H)$ which bears μ. In order to show that μ_x lives on X_{μ} for λ-a.e.x, it is sufficient to prove the following lemma.

13. **Lemma.** Each compact subset A of $E(H)$ is a member of \mathcal{C}.

Proof. - Let us suppose the sequence $(\omega_n)_{n\in\mathbb{N}}$ is a basis of open subsets of \mathbb{R}^N. Let Σ be the subset of N such that $n \in \Sigma$ if, and only if, there exists $h \in h^+(E)$, with $h = 0$ on A, and $h > 0$ on ω_n. For each $n \in \Sigma$, we choose $h_n \in h^+(E)$, with $h_n = 0$ on A, and $h_n > 0$ on ω_n.

Let us show that, for each $x \notin R^+ A$, we have $h_n(x) > 0$ for at least one $n \in \Sigma$. For each $y \in A$, there exists $h_y \in E'$ with $h_y(x) > 0$, and $h_y(y) < 0$. By compactness, there exists $h_x \in h^+(E)$, with $h_x(x) > 0$, and $h_x = 0$ on A. As the set $\{z ; h_x(z) > 0\}$ is open, then there exists $n \in N$ such that $x \in \omega_n$ and $h_n(x) > 0$. Therefore, we have $n \in \Sigma$ and $h_n(x) > 0$.

Now, if we let $h = \text{lub}_{n\in\Sigma}(h_n)$, then we have $h = 0$ on A, and $h(z) > 0$ for each $z \notin R^+ A$. Hence $A \in \mathcal{C}$.

Now, it is easy to complete the proof of § 12 by a mixture of X_{λ} and X_{μ}.

14. **Remark** (N. F. SAINTE BEUVE [11], theorem 3). - In the case of \mathbb{R}^N, we can take the unit sphere of \mathbb{R}^n (for the usual distance) for X.

15. **Example** (Answer to a question of G. CHOQUET). - Let \mathbb{M} be the set of Radon measures on $(0, 1)$, and \mathbb{M}_1^+ the subset of probability measures.

Let E the vector subspace of \mathbb{M} generated by the Dirac probabilities, E is equipped with the weak*-topology.

Suppose μ is the maximal measure on \mathbb{M}_1^+ which represents the element $dx \in \mathbb{M}_1^+$.

The measure μ and dx induce, in a canonical way, elements of $\mathbb{M}^+(E)$, $\tilde{\mu}$ and $\varepsilon_d\mu$, since $E \cap \mathbb{M}^+_1$ is dense in \mathbb{M}^+_1.

Let φ be the canonical injection from $(0, 1)$ into \mathbb{M}, and $X = \varphi((0, 1))$. We have $\varepsilon_d\mu < \tilde{\mu}$ (in fact, $\varepsilon_d\mu = \varepsilon_d(\tilde{\mu})$ in the weak completion of E), however $\tilde{\mu}$ has a localization on the compact subset X of E, while $\varepsilon_d\mu$ does not have such a localization.

Part II: Extension of a result of Strassen and "theory of balayage".

II (A). Extension of a result of Strassen.

16. Notations and definitions. - Suppose X and Y are two compacta (Hausdorff) spaces and $x \mapsto M_x$ is a mapping of X in the set of closed convex subsets of $\mathbb{M}(Y)$ (positive Radon measures on Y).

For each $f \in C(Y)$ (continuous real functions on Y), we let

$$\forall x \in X, \quad \hat{f}(x) = \text{lub}_{\nu \in M_x} (\nu(f)),$$

we have $\hat{f}(x) \in \mathbb{R}$, and $(\hat{f}(x) = -\infty) \iff (M_x = \emptyset)$.

The map $f \mapsto \hat{f}$ has been previously considered by P.-A. Meyer ([8], p. 301).

Suppose $\lambda \in \mathbb{M}^+(X)$. For each function φ on X with values in \mathbb{R}, we let

$$\lambda^\varphi = g \& b(\lambda(u)); \; u \geq \varphi, \; u \text{ l.s.c. on } X, \text{ with values in } \mathbb{R} \cup (+\infty).$$

We have $\lambda^\varphi \in \mathbb{R}$.

If $\lambda \in \mathbb{M}^+(X)$ and $\mu \in \mathbb{M}^+(Y)$, we write $\lambda < \mu$ if, and only if, for each $f \in C(Y)$, we have $\mu(f) \leq \lambda^\varphi(\hat{f})$. We let $p_\lambda(f) = \lambda^\varphi(\hat{f})$.

17. Proposition. - Suppose $\lambda \in \mathbb{M}^+(X)$ and $\mu \in \mathbb{M}^+(Y)$ with $\lambda < \mu$. For each sequence $\lambda_1, \ldots, \lambda_n$, such that $\lambda = \lambda_1 + \cdots + \lambda_n$ with $\lambda_i \geq 0$, there exists a sequence μ_1, \ldots, μ_n with $\mu_i \geq 0$, such that $\mu = \mu_1 + \cdots + \mu_n$, and $\lambda_i < \mu_i$ for $i = 1, 2, \ldots, n$.

Proof. - Let 1 be the constant function equal to 1 on Y.

We have $\lambda^\varphi(-1) \geq \mu(-1) > -\infty$. Hence, for each $f \in C(Y)$, we have

$$\lambda_i(\hat{f}) \in \mathbb{R} \cup (+\infty) \text{ for } i = 1, 2, \ldots, n,$$

then we can use the same proof than in proposition 5.

18. Proposition. - We let $H = \{(x, \nu); \; x \in X, \; \nu \in M_x\}$. If $\lambda \in \mathbb{M}^+(X)$ and $\mu \in \mathbb{M}^+(Y)$, the two following properties are equivalent

1° $(\lambda, \mu) \in \text{conv}(R^+H)$ in $\mathbb{M}^+(X) \times \mathbb{M}^+(Y)$ equipped with the weak*-topology.

2° For each $f \in C(Y)$, we have

$$\mu(f) \leq g \& b(\lambda(g)); \; g \in C(X) \text{ and } \hat{f} \leq g.$$
Proof. - We apply the theorem of Hahn-Banach.
Suppose \(g \in C(X) \) and \(f \in C(Y) \). Then \((g, -f)\) is in the polar of \(H \) if, and only if, \(\hat{f} \leq g \).

1° \(\Rightarrow \) 2°: If \(f \in C(Y) \), we have \(\lambda(g) \geq \mu(f) \) for each \(g \in C(X) \) with \(\hat{f} \leq g \), hence 2° is fulfilled.

2° \(\Rightarrow \) 1°: For each \(g \in C(X) \) and each \(f \in C(Y) \) with \(\hat{f} \leq g \), we have, on account of 2°, \(\mu(f) \leq \lambda(g) \). Hence 1° is fulfilled on account of the bipolar theorem.

19. Definition of the relation \(\ll \). - If \(\lambda \in \mathfrak{M}^+(X) \), proposition 18 invites us to let, for each \(f \in C(Y) \)

\[q_\lambda(f) = g \& b(\lambda(g)) \quad (g \in C(X) \text{ and } g \geq \hat{f}) \]

Note we have \(p_\lambda \leq q_\lambda \). Moreover, if \(H \) is a closed subset of \(\mathfrak{M}^+(X) \times \mathfrak{M}^+(Y) \), then we have \(p_\lambda(-1(y)) = q_\lambda(-1(y)) \) because \(-\hat{f}(y) \) is negative, and u. s. c.

If \(\mu \in \mathfrak{M}^+(Y) \), we write \(\lambda \ll \mu \) if, and only if, \(\mu < q_\lambda \). We have

\[(\lambda < \mu) \Rightarrow (\lambda \ll \mu) \]

Of course, we can prove the analogous of proposition 17 for the relation \(\ll \). Note, in the case, study by P.-A. MEYER ([8] p. 302) (i.e. \(H \) is compact), \(\hat{f} \) is u. s. c. so that \(\hat{f} = g \& b(g) \quad (g \in C(X), g \geq \hat{f}) \). Hence \(p_\lambda = q_\lambda \).

20. PROPOSITION. - Suppose \(\mathcal{R} \) is the closure, in \(\mathfrak{M}^+(X) \times \mathfrak{M}^+(Y) \), equipped with the weak*-topology, of the set

\[\mathcal{K} = \{ (\varepsilon_x / (1 + \nu_x(1)), \nu_x / (1 + \nu_x(1))) \mid x \in X, \nu_x \in \mathcal{M}_x \} \]

If \(\lambda \in \mathfrak{M}^+(X) \) and \(\mu \in \mathfrak{M}^+(Y) \), the two following properties are equivalent:

1° \(\lambda \ll \mu \)

2° There exists a positive Radon measure \(\pi \) on the compact set \(\mathcal{K} \) such that \(r(\pi) = (\lambda, \mu) \).

Proof.

1° \(\Rightarrow \) 2°: Each element \(u \) of \(\text{conv}(\mathcal{R}^+ H) \) can be written \(u = \sum_{x \in X} \epsilon_{x}^{u}(\varepsilon_{x}, \nu_{x}^{u}) \)
where the \(\epsilon_{x}^{u} \) are unique, positive, and equal to 0 except for a finite number of \(x \in X \). We have \(\nu_{x}^{u} \in \mathcal{M}_x \).

On account of §18, there exists an ultrafilter \(\mathcal{U} \) on \(\text{conv}(\mathcal{R}^+ H) \) such that \(\lim_{\mathcal{U}}(u) = (\lambda, \mu) \).

\(u \) is the resultant of the following conical measure \(\pi_u \) on \(\mathfrak{M}^+(X) \times \mathfrak{M}^+(Y) \) with \(\pi_u = \sum_{x \in X} a_x^u \varepsilon((b_x^u, c_x^u)) \) where

\[a_x^u = (1 + \nu_x^u(1))k_x^u, \quad b_x^u = \varepsilon_x^u / (1 + \nu_x^u(1)) \]

and \(c_x^u = \nu_x^u(1) \).
\(\pi_u \) can be also seen as a positive Radon measure on \(\bar{K} \).

We have \(\lim \nu_u(1) = \lambda(1) + \mu(1) \). Hence \(\lim \nu_u \) exists as a positive Radon measure \(\pi \) on \(\bar{K} \) and \(r(\pi) = (\lambda, \mu) \).

Each discrete positive Radon measure on \(K \) can be written

\[m = \sum_{p \in K} a_p \epsilon((b_p, c_p)) \text{ where } (b_p, c_p) \in K, \ a_p > 0 \text{ and } a_p = 0, \]

except for a finite number of \(p \in K \).

There exists an ultrafilter \(\mathfrak{U} \) on the discrete positive measures on \(K \) such that \(\lim_{\mathfrak{U}}(m) = \pi \).

If \(g \in C(X) \) and \(f \in C(Y) \) with \(g \geq f \), we have

\[\lambda(g) = \lim_{\mathfrak{U}}(\sum_{p \in K} a_p b_p(1) g(b_p/b_p(1))) \]

and

\[\mu(f) = \lim_{\mathfrak{U}}(\sum_{p \in K} a_p c_p(f)). \]

As \(g \geq f \), we have \(b_p(1) g(b_p/b_p(1)) \geq c_p(f) \), hence \(\lambda(g) > \mu(f) \).

21. PROPOSITION (Extension of a result of STRASSEN [8], p. 302). - Suppose moreover that \(X \) and \(Y \) are metrizable, and that \(H \) is a closed subset of \(\mathfrak{M}(X) \times \mathfrak{M}(Y) \) equipped with the weak*-topology. If \(\lambda \in \mathfrak{M}(X) \) and \(\mu \in \mathfrak{M}(Y) \)

with \(\lambda \ll \mu \), then, there exists a Borel mapping \(x \mapsto \nu_x \) defined on \(X \) such that \(\nu_x \in \mathfrak{M}_x \lambda-a.e., \) and \(\mu \gg \int \nu_x d\lambda(x) \), and \(\mu \ll \nu - \int \nu_x d\lambda(x) \).

Proof. - Note that \(\{x ; M_x = \emptyset\} \) is a \(G_\delta \lambda \)-null subset of \(X \) since \(\lambda(1(y)) \geq \mu(-1(y)) > -\infty \). We shall use the notations of the proof of §20.

Suppose \(\nu \) is the projection of \(\mathfrak{M}(X) \times \mathfrak{M}(Y) \) on \(\mathfrak{M}(X) \). We have \(\nu(\pi) = \lambda \) as conical measures on \(\mathfrak{M}(X) \). Let \(A_0 = \{(0, \beta) ; \beta \in \mathfrak{M}(Y) \} \), and \(\pi_0 \) the part of \(\pi \) carried by \(A_0 \).

Let \(\pi' = \pi - \pi_0 \).

Suppose \(\pi' = \pi_1' + \ldots + \pi_n' + \ldots \) is a decomposition of \(\pi' \) such that, for each \(n \), \(\pi_n' \) lives on \(A_n = \{(\alpha, \beta) ; \alpha \in \mathfrak{M}(X), \beta \in \mathfrak{M}(Y) \text{ and } \alpha(1) > 1/n\} \). Let \(\pi_n^\mu \) the Radon measure on \((1, n)[X] \) such that, for each \(f \in C((1, n)[X]) \), we have

\[\pi_n^\mu(f) = \int \alpha(1) f(\alpha/\alpha(1), \beta/\alpha(1)) \, d\nu_n^\mu(\alpha, \beta). \]

\(\pi_n^\mu \) and \(\pi_n^\mu \) induce the same conical measure on \(\mathfrak{M}(X) \times \mathfrak{M}(Y) \). Then \(\nu(\pi_n^\mu) \) is carried by \(\{\varepsilon_x, x \in X\} \); the image of \(\lambda \) by the map \(x \mapsto \varepsilon_x \) of \(X \) into \(\mathfrak{M}(X) \) is \(\sum \nu(\pi_n^\mu) \). If \(\varepsilon_x \mapsto \nu_x^\pi \) is a disintegration ([2], p. 58) of \(\pi_n^\mu \) with respect to \(\nu \), then, for each \(n \), we have \(\nu(\pi_n^\mu) \)-a.e., that \(\nu_x^\pi \) lives on the set \(\{(\varepsilon_x, v) ; v \in M_x \text{ and } \nu(1) \leq n\} \), let \(\nu_x^\pi \in M_x \) such that

\[r(\varepsilon_x \otimes \nu_x^\pi) = (\varepsilon_x, \nu_x^\pi). \]

For each \(x \in X \), we identify \(x \) and \(\varepsilon_x \). Let \(\mu_0 \in \mathfrak{M}(Y) \) be such that \((0, \mu_0) = r(\pi_0) \). We have \(\lambda = \sum \nu(\pi_n^\mu) \) and \(\mu - \mu_0 = \sum \nu_x^\pi \, d\nu(\pi_n^\mu) \).
If we let \(\psi = \frac{1}{n} \sum_{n=1}^{\infty} \psi_{n}(\theta_{n})/\lambda \), then, we have \(\psi \in H_{\lambda} \), \(\lambda \)-a.e. and \(\mu - \mu' = \int \psi_{x} \, d\lambda(x) \). As \(\pi_{0} \) is carried by \(A_{0} \), we have \(0 \ll \mu' \).

22. **Remark.** - Strictly speaking, in [8] (chap. 11), Strassen theorem is T51 which admits T52 as a consequence, but T51 can be also derived from T52. We sketch a proof, with the notations of [8]. Suppose \(E_{1}^{+} \) is the unit ball of \(E' \) equipped with the weak*-topology. For each \(\omega \in \Omega \), let \(P_{\omega} \) be the set
\[
\{ y \, ; \, y \in E' \land \, y \leq p_{\omega} \}.
\]
We suppose \(P_{\omega} \subset E_{1}^{+} \). Let \(M_{\omega} = \{ \nu \, ; \, \nu \in \pi_{1}^{+}(E) \land \, r(\nu) \in P_{\omega} \} \).

Now, suppose \((x_{n}) \) is a sequence of \(E \) everywhere norm-dense in the unit ball \(E_{1} \) of \(E \). Let \(\Phi \) be the map \(\Omega \rightarrow \{-1, 1\}^{N} \) such that \((\Phi(\omega))_{n} = p_{n}(x_{n}) \). We let \(X = \Phi(\Omega) \) and \(\Lambda = \Phi(\lambda) \), which is a regular Borel measure on \(X \) ([9] prop. II.7.2).

For each \(t = (t_{n}) \) in \(X \), because of [8] (p. 300 footnote), there exists a sublinear form \(p_{t} \) on \(E \) such that \(p_{t}(x_{n}) = t_{n} \), for each \(n \), and \(p_{t}(E_{1}) \in (-1, 1) \).

Then the definition of \(P_{t} \) and \(M_{t} \) are meaningful, and the set \(\{(t, \nu) \, ; \, t \in X \land \, \nu \in M_{t} \} \) is a compact subset of \(X \times \pi_{1}^{+}(E_{1}) \).

Now it is sufficient to apply T52 to \(X \) and measure \(\Lambda \), with \(Y = E_{1}^{+} \) using the map \(X \rightarrow \Phi(\pi_{1}^{+}(Y)) \) defined by \(t \mapsto M_{t} \), and taking for \(\mu \) an extension of \(x' \) to \(C(Y) \) such that, for each \(f \in C(Y) \), \(\mu(f) \leq \Lambda(f) \), then T51 follows since in \(X \), \(\Phi(\Omega) \) is of \(\Lambda \)-outer measure equal to \(\Lambda(1) \).

II (B). Theory of balayage.

23. **Notations.** - Suppose \(X \) is a compact (HAUSDORFF) space, \(\Gamma \) a convex subcone of \(C(X) \) which is an inf-lattice (i.e. if \(f, g \in \Gamma \), then \(g \& b(f, g) \in \Gamma \)), and \(\Gamma^{0} \) is the polar of \(\Gamma \) in \(\pi(X) \).

Using the previous notations, we take \(Y = X \),
\[
M_{X} = (\varepsilon - \Gamma^{0}) \cap \pi^{+}(X) = \{ \mu \, ; \, \mu \in \pi^{+}(X) \land \mu|_{\Gamma} \leq \varepsilon|_{\Gamma} \}.
\]
Note that we do not suppose as in [8] (p. 294-297) that \(\Gamma \) contains a strictly positive function.

24. **Definition (of \(f_{\Gamma} \) and \(r_{\lambda} \)).** - For each \(f \in C(X) \), we let
\[
f_{\Gamma} = g \& b(g \land g \geq f)
\]
and for each \(\lambda \in \pi^{+}(X) \), we let \(r_{\lambda}(f) = \lambda(f_{\Gamma}) \). \(r_{\lambda} \) is a sublinear functional on \(C(X) \), with values in \(R \cup (+\infty) \), and we have \(p_{\lambda} \leq q_{\lambda} \leq r_{\lambda} \).

25. **Proposition (Extension of a balayage formula of MOKOBODZKI [8] chap. 11 T45).**

For each \(f \in C(X) \) with \(f < 0 \), we have \(f_{\Gamma} = \overline{f} \).

Moreover the following properties are equivalent:

1° There is no element \(> 0 \) in \(\Gamma \),
2° $\hat{1} = + \infty$ everywhere on X.

3° $\hat{1}$ is equal to infinity in at least one point of X.

4° $\hat{1}$ is unbounded on X.

Proof. - Let us prove that $f_{\Gamma} = \hat{1}$ for each $f < 0$ of $C(X)$.

If $\lambda \in \mathbb{R}^+(X)$, because of the theorem of Hahn-Banach recalled in § 1, for each $k \in \mathbb{R}^+$, there exists $\mu_k \in \mathbb{R}^+(X)$ with $\mu_k(f) = k$ and $\mu_k \leq r_\lambda$.

It suffices now to take $\lambda = \varepsilon_x$ and $k = f_\Gamma(x) = r_\lambda(f)$. Now $1° \implies 2°$ can be proved in the same way, and we see that $4° \implies 1°$.

26. PROPOSITION.

(a) Suppose f is an u. s. c. function < 0 on X. We have $f_{\Gamma} = \hat{f}$ (the definition of \hat{f} is as in § 16 and that of f_{Γ} as in § 24).

(b) If (f_n) is a family of u. s. c. functions < 0 on X, directed downward, having a limit f, we have $(f_n) \to f_{\Gamma}$.

Proof.

(a) can be proved as in [7] (prop. 5.6) because it is enough to work, for each $x \in X$, on a compact subset of M_x.

(b) can be proved as in [7] (prop. 5.6).

Proposition 25 enables us to give a balayage proof of the following result of Choquet-Deny [4].

27. PROPOSITION. - Suppose Γ is a closed convex subcone of $C^-(X)$ which is an inf-lattice and contains -1. If we let

$$\hat{\Gamma} = \{f ; f \in C^-(X) \text{ with } m(f) \leq f(x), \forall x \in X, \forall m \in \mathbb{R}^+(X) \text{ with } m|\Gamma \leq \varepsilon_x|\Gamma\},$$

then we have $\Gamma = \hat{\Gamma}$.

Proof. - $\hat{\Gamma}$ is a closed convex subcone of $C^-(X)$ which is an inf-lattice and $\Gamma \subseteq \hat{\Gamma}$. For each $f \in C(X)$ such that $f < 0$, we have, because of 25,

$$f_{\Gamma}(x) = \operatorname{lub}_{x \in M_x}(v(f)),$$

and we see that $f_{\hat{\Gamma}}(x) = \operatorname{lub}_{x \in M_x}(v(f))$, hence $f_{\Gamma} = f_{\hat{\Gamma}}$. Therefore, by Dini lemma, we have $f = f_{\Gamma}$ if, and only if, $f \in \Gamma$ and $f = f_{\hat{\Gamma}}$ if, and only if, $f \in \hat{\Gamma}$, hence $\Gamma \cap \{f < 0\} = \hat{\Gamma} \cap \{f < 0\}$. Then $\Gamma = \hat{\Gamma}$, since Γ and $\hat{\Gamma}$ are the closure of $\Gamma \cap \{f < 0\}$ and $\hat{\Gamma} \cap \{f < 0\}$.

28. Remark. - Suppose Γ is separating. Then we can apply to Γ the theorem 48 of [8] (chap. 11) about the Silov compacts. It is enough to apply [8] (chap. 11, th. 48) to the cone $\Gamma_1 = \{f ; f = g + a \text{ with } g \in \Gamma \text{ and } a \geq 0\}$ which is an inf-lattice.
REFERENCES

(Texte reçu le 13 janvier 1978)

Richard BECKER
Equipe d'Analyse, Tour 46
Université Pierre et Marie Curie
4 place Jussieu
75230 PARIS CEDEX 05