PAUL F. CONRAD

Subdirect sums of integers and reals

Séminaire Dubreil. Algèbre et théorie des nombres, tome 20, n° 2 (1966-1967), exp. n° 21,
p. 1-8

<http://www.numdam.org/item?id=SD_1966-1967__20_2_A9_0>
1. Introduction and statement of the main theorems.

The concept of a subdirect sum of integers is important in the study of abelian latticed-ordered groups ("\(\ell \)-groups") since WEINBERG [12] has shown that a free abelian \(\ell \)-group is a subdirect sum of integers and hence each abelian \(\ell \)-group is a homomorphic image of a subdirect sum of integers. In this paper, those \(\ell \)-groups which are subdirect sums of integers are characterized. We also characterize those \(\ell \)-groups which are subdirect sums of subgroups of the naturally ordered additive group \(R \) of real numbers. TOPPING [10] has shown that each vector lattice is a homomorphic image of such an \(\ell \)-group.

PAPPERT [9] has determined a necessary and sufficient condition for a vector lattice to be a subdirect sum of reals, and BERNAU [2] has shown that with a slight modification her theory applies to an arbitrary \(\ell \)-group. Both of these authors use the fact that an archimedean \(\ell \)-group can be represented by almost finite functions on a Stone space to obtain their results. Our condition is simpler, and the proof is elementary.

In [3], BERNAU characterizes those subdirect sums of integers which contain the small sum, and those which contain a dense subset of bounded elements. We can also characterize these classes of \(\ell \)-groups. These and other special cases and corollaries of our two main theorems are contained in Section 3.

For each \(\lambda \in \Lambda \), let \(G_\lambda \) be a totally ordered group ("\(o \)-group") that is \(o \)-isomorphic to a subgroup of \(R \). Thus, each \(G_\lambda \) is an archimedean \(o \)-group, or equivalently an \(o \)-group without proper convex subgroups. \(\prod G_\lambda \) will denote the large or unrestricted direct sum of the \(G_\lambda \) ordered pointwise, the large cardinal sum of the \(G_\lambda \), and \(\sum G_\lambda \) will denote the \(s \)-all cardinal sum of the \(G_\lambda \). In particular, \(\prod G_\lambda \) is an \(\ell \)-group, and \(\sum G_\lambda \) is an \(\ell \)-ideal of \(\prod G_\lambda \). If there exists an \(\ell \)-isomorphism of an \(\ell \)-group \(G \) onto a subdirect sum of \(\prod G_\lambda \), then we say that \(G \) is a subdirect sum of reals. If, in addition, each \(G_\lambda \) is cyclic, then we say that \(G \) is a subdirect sum of integers.

Let \(G \) be an \(\ell \)-group, \(G^+ = \{ g \in G \mid g > 0 \} \), and let \(Z^+ \) be the set of all strictly positive integers. An element \(x \in G^+ \) will be called real, if there exists a map \(y \rightarrow \overline{y} \) of \(G^+ \) into \(Z^+ \) such that:
(I) \((\bar{y}x - y) \wedge (\bar{z}x - z) \not\leq 0\) for all \(y, z \in G^+\).

If, in addition, for all \(y \in G^+\) and all \(n \in \mathbb{Z}^+\):

(II) \(\bar{y} = 1\) implies \(\bar{ny} = 1\),

(III) \(x \geq 2y\) implies \(\bar{y} = 1\),

then \(x\) will be called an integral element of \(G\).

THEOREM 1. - An \(\lambda\)-group \(G\) is a subdirect sum of reals if, and only if, each \(y \in G^+\) exceeds a real element.

THEOREM 2. - An \(\lambda\)-group \(G\) is a subdirect sum of integers if, and only if, each \(y \in G^+\) exceeds an integral element.

2. **Proofs of theorems 1 and 2.**

In all that follows, let \(G \neq 0\) be an \(\lambda\)-group. A convex \(\lambda\)-subgroup \(M\) of \(G\) is a subgroup that satisfies

\[|x| \leq |a| \quad \text{for} \quad x \in G \quad \text{and} \quad a \in M \quad \text{implies} \quad x \in M , \]

or equivalently \(M\) is a sublattice and a convex subset of \(G\). In particular, the set of all right cosets of a convex \(\lambda\)-subgroup \(M\) is a distributive lattice such that, for all \(a, b \in G\),

\[M + a \lor M + b = M + a \lor b , \]

and dually, where, by definition, \(M + a \geq M + b\) if \(x + a \geq b\) for some \(x \in M\).

A prime subgroup of \(G\) is a convex \(\lambda\)-subgroup for which the lattice of right cosets is totally ordered. For a convex \(\lambda\)-subgroup \(M\) of \(G\), the following properties are equivalent:

(a) \(M\) is prime;

(b) The set of convex \(\lambda\)-subgroups that contain \(M\) is a chain with respect to inclusion;

(c) If \(a, b \in G^+ \setminus M\), then \(a \wedge b \in G^+ \setminus M\).

Let \(\mathbb{M}\) be the set of all maximal prime subgroups of \(G\). If \(M \in \mathbb{M}\) and \(M \triangleleft G\), then \(G/M\) is \(o\)-isomorphic to a subgroup of \(R\) (notation \(G/M < R\)). For proofs of the above, see [6].

We shall consider the following properties of \(x \in G^+\):

(1) There exists \(M \in \mathbb{M}\) such that \(M + x\) covers \(M\) and, for each \(y \in G^+\), \(M + nx > M + y\) for some \(n \in \mathbb{Z}^+\);

(2) \(x\) is an integral element of \(G\);
LEMMA. - (1) \implies (2) \implies (3) \iff (4), and if each \(M \in \mathbb{R} \) is normal in \(G \), then (2) \implies (1).

Proof. - It follows from the definition of real and integral elements that (2) \implies (3).

(4) \implies (3): For each \(y \in G^{+} \), let \(\overline{y} \) be the least element in \(Z^{+} \) such that
\[M + \overline{y}x > M + y. \]
Then, for all \(y, z \in G^{+} \),
\[M + (\overline{y}x - y) \land (\overline{z}x - z) = M + (\overline{y}x - y) \land M + (\overline{z}x - z) > M. \]
Thus \((\overline{y}x - y) \land (\overline{z}x - z) \not\in 0\), and so \(x \) is real.

(1) \implies (2): Define \(\overline{y} \) as above. Since \(M + x \) covers \(M \), for \(y \in G^{+} \) and \(n \in Z^{+} \), the following are equivalent:
\[\overline{y} = 1, \quad y \in M, \quad ny \equiv M \quad \text{and} \quad \overline{ny} = 1. \]
If \(y \in G^{+} \) and \(x \not> 2y \), then \(y \in M \), and so \(\overline{y} = 1 \). For if \(y \not\in M \), then \(M + x \not> M + 2y > M + y > M \), but this contradicts the fact that \(M + x \) covers \(M \). Therefore \(x \) is an integral element in \(G \).

(3) \implies (4): For \(y, z \in G^{+} \),
\[[(\overline{y}x - y) \lor O] \land [(\overline{z}x - z) \lor O] = [(\overline{y}x - y) \land (\overline{z}x - z)] \lor O \in G^{+}. \]
Thus, \(Q_{x} = \{(\overline{y}x - y) \lor O \mid y \in G^{+}\} \) is contained in an ultrafilter \(K \) of \(G^{+} \). That is, \(0 < a \land b \in K \) for all \(a, b \in K \), and \(K \) is maximal with respect to this property. It follows that
\[N = \bigcup_{k \in K} k', \]
is a minimal prime subgroup of \(G \), and \(K = G^{+} \setminus N \), where
\[k' = \{g \in G \mid |g| \land k = 0 \} \]
is the polar of \(k \). This is theorem 5.1 in [7], and this result is also implicit in [1] and [8].

(A) \[N + \overline{y}x > N + y, \quad \text{for each} \quad y \in G^{+}. \]
For \((\overline{y}x - y) \lor O \in K = G^{+} \setminus N \), and hence \(N + (\overline{y}x - y) \lor O > N \), and so \[N + \overline{y}x - y > N. \]
Since the convex \(\lambda \)-subgroups of \(G \) that contain \(N \) form a chain, there is a unique convex \(\lambda \)-subgroup \(M \supset N \) that is maximal, with respect to \(x \not\in M \).

\[M \in \mathbb{P} \]

For if \(y \in G^+ \), then \(N + \bar{y}x > N + y \), and hence \(a + \bar{y}x > y > 0 \) for some \(a \in N \). But clearly, \(a + \bar{y}x \) is contained in any convex \(\lambda \)-subgroup that properly contains \(M \). Therefore, \(G \) covers \(M \), and hence \(M \in \mathbb{P} \). It follows from (A) that

\[M + (\bar{y} + 1)x > M + \bar{y}x > M + y \]

Therefore (4) is satisfied.

To complete the proof, we need to show that (2) \(\implies \) (1), provided that each \(M \in \mathbb{P} \) is normal in \(G \). Let \(x \) be an integral element, and let \(M \) and \(N \) be as above. Suppose (by way of contradiction) that \(M + x > M + y > M \) for some \(y \in G \).

Then, since

\[M + y \vee 0 = M + y \vee M = M + y \quad \text{and} \quad M + x \wedge y = M + x \wedge M + y = M + y \]

we may assume that \(x > y > 0 \). Now, \(x = x - y + y \), and since \(x - y , y \in G^+ \setminus M \), and \(M \) is prime, \(d = (x - y) \wedge y \in G^+ \setminus M \). Clearly, \(x \geq 2d \), and hence \(\overline{d} = 1 \) and \(\overline{nd} = 1 \) for all \(n \in \mathbb{Z}^+ \). Thus,

\[M + x = M + \overline{nd}x > M + nd \geq M + d > M , \quad \text{for all} \ n \in \mathbb{Z}^+ , \]

but this is impossible, because \(G/M < R \).

COROLLARY. - Suppose that each \(M \in \mathbb{P} \) is normal in \(G \), and consider \(x \in G^+ \).

(a) \(x \) is a real element of \(G \) if, and only if, \(x \in G \setminus M \) for some \(M \in \mathbb{P} \).

(b) \(x \) is an integral element of \(G \) if, and only if, \(M + x \) covers \(M \) for some \(M \in \mathbb{P} \).

Proof. - This is an immediate consequence of the lemma and the fact that \(G/M < R \) is an archimedean \(\alpha \)-group for each \(M \in \mathbb{P} \).

BYRD [4] has shown that \(G \) is a subdirect sum of \(\alpha \)-groups if, and only if, for each prime subgroup \(M \) and each \(g \in G \), \(-g + M + g \leq M \) or \(-g + M + g \supset M \).

Thus, for this class of \(\lambda \)-groups, each \(M \in \mathbb{P} \) is normal.

Proof of theorem 1. - Suppose that \(G \) is a sublattice and a subdirect sum of \(\coprod R_\lambda \ (\lambda \in \Lambda) \), where each \(R_\lambda \in R \). If \(x \in G^+ \), then \(x_\lambda > 0 \) for some \(\lambda \in \Lambda \). Let \(M = \{ g \in G \mid g_\lambda = 0 \} \). Then \(M \in \mathbb{P} \) and \(x \in G \setminus M \). Thus, by the corollary, \(x \) is real, and so each \(x \in G^+ \) is real.
Conversely, suppose that each element in G^+ exceeds a real element, and consider $y, z \in G^+$. There exists a real element $x \leq z$. Thus $\overline{y}x \leq \overline{y}y$, and hence $\overline{yz} \leq \overline{y}$. Therefore G is archimedean, and hence abelian. By the corollary, $x \in G \setminus M$ for some $M \in \mathbb{M}$, and hence $z \in G \setminus M$. Therefore, $0 = \cap \{M \mid M \in \mathbb{M}\}$, and so G is a subdirect sum of reals.

Proof of theorem 2. - Suppose that G is a sublattice and a subdirect sum of ΠZ_{λ} (where each $Z_{\lambda} = \mathbb{Z}$). If $g \in G^+$, then $g \geq x > 0$ for some $x \in G$, where $x_{\lambda} = 1$ for some $\lambda \in \Lambda$. Let $M = \{g \in G \mid g_{\lambda} = 0\}$. Then $M \in \mathbb{M}$, and $M + x$ covers M, and hence, by the corollary, x is integral. Therefore each element in G^+ exceeds an integral element.

Conversely, suppose that each element in G^+ exceeds an integral element. Then, as in the proof of theorem 1, G is abelian. Let $\mathcal{E} = \{M \in \mathbb{M} \mid G/M$ is cyclic\}. Then, by the corollary, $\cap \{M \mid M \in \mathcal{E}\}$ must be zero, since it contains no integral element. Therefore G is a subdirect sum of integers.

3. Special cases of theorems 1 and 2.

An element $s \in G^+$ is called basic, if $\{g \in G \mid 0 \leq g \leq s\}$ is totally ordered.

PROPOSITION A. - For an ℓ-group G, the following properties are equivalent:

1. G is a subdirect sum of reals that contains the small sum;
2. Each element in G^+ exceeds a real element that is also basic;
3. G is archimedean, and each element in G^+ exceeds a basic element.

Proof. - It is shown in [5] that (1) \iff (3). If each element in G^+ exceeds a real element, then G is archimedean, and hence (2) \implies (3). If (1) holds, then each element in G^+ is real, and hence (1) and (3) imply (2).

There are many other equivalent conditions proven in the literature (see for example [11]).

An element $a \in G^+$ is an atom, if it covers 0. It is shown in [5] that x is a basic element in an archimedean ℓ-group G if, and only if, $x'' < R$, and G is the cardinal sum of x'' and x'. Thus a basic element x is integral if, and only if, x'' is cyclic, and hence if, and only if, x is an atom.

PROPOSITION B. - For an ℓ-group G, the following properties are equivalent:

1. G is a subdirect sum of integers that contains the small sum;
2. Each element in G^+ exceeds an integral element that is also basic;
(3) \(G \) is archimedean, and each element in \(G^+ \) exceeds an atom.

Proof. - Clearly (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3).

(3) \(\Rightarrow \) (1): Since each atom is a basic element, it follows from proposition A that \(G \) is a subdirect sum of reals that contains the small sum. Thus, without loss of generality,

\[\sum R_\lambda \subseteq G \subseteq \prod R_\lambda, \]

where \(R_\lambda \subseteq \mathbb{R} \) for each \(\lambda \in \Lambda \). If \(R_\lambda \) is not cyclic, then there exists an element in \(R_\lambda^+ \subseteq G^+ \) that does not exceed an atom, a contradiction. Therefore (1) holds.

An element \(s \in G^+ \) is called singular, if \(a \land (s - a) = 0 \) for each \(0 \leq a \leq s \).

PROPOSITION C. - For an \(\lambda \)-group \(G \), the following properties are equivalent:

(1) \(G \) is a subdirect sum of integers, and each element in \(G^+ \) exceeds a bounded element;

(2) Each element in \(G^+ \) exceeds an integral element that is also singular;

(3) \(G \) is a subdirect sum of reals, and each element in \(G^+ \) exceeds a singular element.

Proof. - In [7], it is shown that (1) \(\iff \) (3), and clearly (2) \(\Rightarrow \) (3).

Suppose that (1) and (3) hold. Then, without loss of generality, \(G \subseteq \bigcap Z_\lambda \), where for each \(\lambda \in \Lambda \), \(Z_\lambda = Z \), and in [7], it is shown that if \(s \in G \) is singular, then \(s_\lambda = 1 \) or \(0 \). Thus, it follows that \(s \) is integral, and hence we have (2).

BERNAU [3] has established (1) \(\iff \) (3) in proposition B, and has derived a condition that is equivalent to (1) in proposition C.

Suppose that \(x \in G^+ \) is real, and let \(A_x \) be the set of all maps \(\pi : G^+ \rightarrow \mathbb{Z}^+ \), such that for all \(y, z \in G^+ \),

\[((\nu y)x - y) \land ((\nu z)x - z) \leq 0. \]

For \(\alpha, \beta \in A_x \), define \(\alpha \preceq \beta \) if \(y\alpha \preceq y\beta \) for all \(y \in G^+ \). Then \((A, \preceq) \) is a po-set, and each element in \(A_x \) exceeds a minimal element in \(A_x \). For if \[\{a_\lambda \mid \lambda \in \Lambda \} \]

is a chain in \(A_x \), then for each \(y \in G^+ \), define

\[y\pi = \min\{y\alpha_\lambda \mid \lambda \in \Lambda \}. \]

If \(y, z \in G^+ \), then there exists \(\lambda \in \Lambda \) such that \(y\alpha_\lambda \) and \(z\alpha_\lambda \) are minimal,
and so
\[(yn - y) \wedge (zn - z) = ((yw_\lambda)x - y) \wedge ((zw_\lambda)x - z) \leq 0 .\]
Therefore \(n \in A_x \), and hence, by Zorn's lemma, each map in \(A_x \) exceeds a minimal map.

Definition. - A real element \(x \in G^+ \) for which there exists a minimal map \(y \rightarrow \bar{y} \) in \(A_x \) that also satisfies (II), will be called a \(*\)-element.

PROPOSITION D. - For an \(\lambda \)-group, the following properties are equivalent:

1. Each element in \(G^+ \) exceeds a \(*\)-element;
2. \(G \) is \(\lambda \)-isomorphic to a subdirect sum \(\prod Z_\lambda \), where for each \(\lambda \in \Lambda \), \(Z_\lambda = Z \), and \(G_\lambda = \{ g \in G \mid g_\lambda = 0 \} \) is both a maximal and a minimal prime subgroup of \(G \).

Proof.

(1) \(\Rightarrow \) (2): Since each \(*\)-element is real, it follows from theorem 1 that \(G \) is abelian. Let \(x \) be a \(*\)-element in \(G \), and let \(y \rightarrow \bar{y} \) be a minimal map in \(A_x \) that also satisfies (II). Construct \(M \) and \(N \) as in the proof of (3) \(\Rightarrow \) (4) in the lemma. Since \(N + \bar{y}x > N + y \) for all \(y \in G^+ \), and the map \(y \rightarrow \bar{y} \) is minimal, it follows that \(\bar{y} \) is the least element in \(Z^+ \) for which \(N + \bar{y}x > N + y \). Suppose (by way of contradiction) that \(M \not\geq N \), and pick \(0 < z \in M \setminus N \), and let \(y = -(x \wedge z) + x \). Then,

\[M + x = M + y \quad \text{and} \quad N + x > N + y . \]
Therefore \(\bar{y} = 1 \), and hence \(\bar{2y} = 1 \), but clearly \(N + 2yx = N + x < N + 2y \), that is a contradiction. Thus, \(N = M \) is both maximal and minimal. If \(M + x > M + y \), then \(\bar{y} = 1 \), and hence \(M + x = M + M + ny \geq M + ny \) for all \(n \in Z^+ \). Thus, since \(G/M < R \), it follows that \(y \in M \), and so \(G/M \) is cyclic.

(2) \(\Rightarrow \) (1): We may assume that \(G \subseteq \prod Z_\lambda \). If \(z \in G^+ \), then \(z \geq x \in G^+ \), where \(x_\lambda = 1 \) for some \(\lambda \in \Lambda \). For \(y \in G^+ \), define \(\bar{y} \) to be the least element in \(Z^+ \) such that \(\bar{y}x_\lambda > y_\lambda \). Then, the map \(y \rightarrow \bar{y} \) satisfies (I), (II) and (III). It remains to be shown that this map is minimal in \(A_x \). Suppose that \(y \rightarrow \tilde{y} \) is a map in \(A_x \), and \(\bar{y} \leq \tilde{y} \) for all \(y \in G^+ \). Construct \(M \) and \(N \) as above, using the map \(y \rightarrow \tilde{y} \). In particular, \(N + \tilde{y}x > N + y \) and \(M + \tilde{y} \geq M + y \) for all \(y \in G^+ \).

If \(M \neq C_\lambda \), then there exists \(y \in G^+ \) such that \(y_\lambda = 0 \) and \(y \notin M \). Since \(y_\lambda = 0 \), \(\bar{y} = 1 \), and so \(n\bar{y} = n\bar{y} = 1 \) for all \(n \in Z^+ \), but this means that
M + x > M + ny for all n ∈ Z⁺, and this contradicts the fact that G/H < R.

If M = G₀, then, since G₀ is a minimal prime, M = N, and so M + yx > M + y for all y ∈ G⁺, and it follows that y = y for all y ∈ G⁺. Therefore x is a *-element, and hence (1) is satisfied.

REFERENCES