VIKALATHUR S. KRISHNAN

Semimetrics, semiécart in ordered semigroups

<http://www.numdam.org/item?id=SD_1970-1971__24_1_A1_0>
Completing a metric space is a classic construction. Starting with the space of rationals \mathbb{Q} (or \mathbb{Q}^n) with its metric taking values in the ordered semigroup of positive rationals, its completion \mathbb{R} (or \mathbb{R}^n) has a metric in the completion, in a suitable sense, of \mathbb{Q}^+, which is the ordered semigroup of positive reals. That this result admits natural generalizations is the main contention of this paper.

First, we abstract the properties of the semigroups \mathbb{Q}^+ or \mathbb{R}^+ in the definition of the "Abelian perfectly ordered semigroup".

Definition. An Abelian perfectly ordered semigroup (or Apo-semigroup, for short) is a triple $(S, +, \preceq)$ consisting of a set S, a binary operation $+$ defined on S under which $(S, +)$ is a commutative semigroup with zero element 0, and a relation of partial order \preceq defined on S such that the following conditions are satisfied:

(a) For arbitrary x, y, z from S, $x \preceq y$ if, and only if, $(x + z) \preceq (y + z)$

(b) The set $H = \{ x \in S ; 0 < x \}$ is down-directed and weakly divisible: that is, if x, y are in H, there is a z in H which is $\preceq x, \preceq y$; and if x is in H, there is a x' in H such that $x' + x' \preceq x$.

It is not hard to show that the last condition (b) is true for H if, and only if, it is true of some coinitial subset of (H, \preceq).

We next define a semimetric or semiécart for a set X into such a Apo-semigroup.

Definition. Given a set X, and an Apo-semigroup $(S, +, \preceq)$, a mapping d of $X \times X$ in S is called a semimetric for X in $(S, +, \preceq)$ (is called a semiécart for X in $(S, +, \preceq)$), if it satisfies the following condition: for any x, y, z from X, $d(x, z) \preceq d(x, y) + d(y, z)$ (if it satisfies the following condition: given h in H there is h' in H such that for arbitrary x, y, z from X, $d(x, y) \preceq h'$ and $d(y, z) \preceq h'$ imply $d(x, z) \preceq h$).

In view of our assumption (b) for H, it follows that a semimetric d for X in $(S, +, H)$ is ipso facto a semiécart for X in $(S, +, \preceq)$.

Since the condition (a) for the ordered semigroup implies that it is cancellative (being also abelian), the semigroup \((S, +)\) can be isomorphically imbedded as a subsemigroup of a group \((G, +)\) of differences; and we can also now extend the partial order \(\leq\) from the subsemigroup (of elements of the form \(x - 0\)) to the whole group, by setting:
\[(x - x') \leq (y - y') \text{ if, and only if, } (x + y) \leq (x' + y) \text{ in } (S, \leq).\]
Then, it is seen that \((G, +, \leq)\) is also an Apo-(semi-)group. We call it the "group-completion" of the Apo-semigroup.

Given the Apo-semigroup \((S, +, \leq)\), the set \(S\) has a "intrinsic" semimetric in the Apo-group \((G, +, \leq)\) which is the group completion of \((S, +, \leq)\); namely \(d\), given by
\[d(x, x') = x' - x.\]

Note also that when \(d\) is a semimetric (or semiécart) for \(X\) in \((S, +, \leq)\), there is a conjugate semimetric \(d'\) given by
\[d'(x, y) = d(y, x)\]
for any \(x, y\) from \(X\).

We pass on to define the "semiuniform spaces" and their "completions".

Definition. - A family \(U = (U_j; j \in J)\) of binary relations on a set \(X\) (indexed by a set \(J\)) is called a **semiuniformity** (or semiuniform structure) for \(X\) if the following conditions are true:

1. (U1) For each \(x\) of \(X\) and each \(j\) of \(J\), \((x, x) \in U_j\), that is all the relations \(U_j\) are reflexive.

2. (U2) Given \(j \in J\), there is a \(j' \in J\) such that the relational product \(U_j \circ U_{j'}\) is contained in \(U_j\).

We may call the family \(U\) a transitive family of relations when (U2) holds, and

3. (U3) For \(j, j' \in J\), there is a \(j'' \in J\), such that \(U_{j''}\) is contained in both \(U_j\) and \(U_{j'}\).

The semiuniformity is called a quasuniformity, if it satisfies also the following "symmetry" condition:

4. (U4) Given \(j \in J\), there is \(j'' \in J\), such that the reverse relation \(U_{j''} \circ U_j\) is contained in \(U_j\).

And finally, the quasuniformity is a uniformity (in the sense of A. WEIL), if the intersection of the \(U_j\) is the identity relation on \(X\).

A semiuniformity \(U\) for \(X\) determines a "conjugate" semiuniformity
\[U^{-1} = (U_j^{-1}; j \in J)\]
on obtained by taking the reverse relations for all the \(U_j\). \(U\) (and its conjugate) also determine a "symmetric" associate semiuniformity (or quasuniformity)
A semiuniformity \(U \) for \(X \) determines a topology \(T(U) \) for \(X \) when we take as a base of neighbourhoods at a point \(x \) of \(X \) the sets \((U_j(x); j \in J) \) where, as usual, \(U_j(x) \) consists of the points \(y \) of \(X \) for which \((x, y) \in U_j \). The topology \(T(S(U)) \) determined by the symmetric associate \(S(U) \) of \(U \), we shall call the "star topology" determined by \(U \), and denote it by \(T^*(U) \).

If now \((D, \preceq) \) is any down-directed (indexing) set, a function \(s \) of \(D \) in \(X \) is called a \((D, \preceq) \)-sequence in \(X \). Such a sequence is said to converge to a point \(x \) of \(X \) under a topology \(T \) for \(X \) if, for each neighbourhood \(N(x) \) of \(x \) in \(T \), we can find a \(d \) in \(D \) such that \(s(e) \) belongs to \(N(x) \) for each \(e \) (of \(D \)) which is \(\preceq d \). And such a \((D, \preceq) \)-sequence \(s \) in \(X \) is called a Cauchy sequence of the semiuniform space \((X, U) \). If, for each \(U_j \) in \(U \), we can find a \(d \) in \(D \) such that \((s(e), s(e')) \in U_j \) whenever \(e, e' \) (of \(D \)) are \(\preceq d \). Clearly, a Cauchy sequence of \((X, U) \) is also a Cauchy sequence of \((X, S(U)) \), and vice-versa. It can be shown that any \((D, \preceq) \)-sequence of \(X \), which converges to some point of \(X \) under \(T^*(U) \), is a Cauchy sequence of \((X, U) \). The semiuniform space \((X, U) \) is called a complete semi-uniform space if every Cauchy sequence of \((X, U) \) converges to some point of \(X \) under \(T^*(U) \). It follows that \((X, U) \) is complete if, and only if, \((X, S(U)) \) is complete.

We state then the main theorem regarding completing a semiuniform space (which I have proved elsewhere).

THEOREM 1. - Given a semiuniform space \((X, U) \) there is an associated complete semiuniform space \((X^*, U^*) \), which we call the canonical completion of \((X, U) \), such that: there is a bi-uniform bijection between \((X, U) \) and a semiuniform subspace of \((X^*, U^*) \); and every point of \(X^* \) is a limit of a Cauchy sequence of \((X^*, U^*) \) consisting of points of this subspace only, the convergence being under the star topology of \(X^* \) determined by \(U^* \).

When we consider a set \(X \) with a semiécart (or semimetric) \(d \) in Apo-semigroup \((S, +, \preceq) \), we get an associated semiuniformity \(U = (U_h; h \in H) \) for \(X \), when we set \(((x, y) \in U_h) \iff (d(x, y) \leq h) \). This semiuniformity is symmetric if the semimetric is symmetric. In particular, for a Apo-semigroup the intrinsic semimetric for \(S \) in the "group completion" \((G, +, \preceq) \) gives rise to an intrinsic semiuniformity for \((S, +, \preceq) \). Then we have the following main results.

THEOREM 2. - The completion of an Apo-semigroup is also an Apo-semigroup; the completion of an Apo-group is an Apo-group. Upto an order- and semigroup-iso- morphism, the semiuniform completion of the group completion of an Apo-semigroup...
is the same as the group completion of the semiuniform completion of the Apo-semi-
group.

If a set X has a semiécart d in an Apo-semigroup $(S, +, \leq)$, then its cano-
nical completion (as a semiuniform space) has its semiuniformity derivable from a
semiécart in the canonical completion of the Apo-semigroup. This can also be trea-
ted as a semiécart in the group completion of this last complete semigroup.

If X has a semimetric in a totally ordered Apo-semigroup or group, its canoni-
cal completion, as a semiuniform space, has its semiuniformity derivable from a
semimetric in the canonical completion of the Apo-semigroup or group, which would
also be totally ordered.

Details of proofs would be appearing in a paper shortly in the Proceedings of the
Czechoslovak Academy of Sciences [under a report of a Topology Conference, held at
Kanpur (India)].

(Received 10 December 1970)

Viakalathur S. KRISHNAN
Temple University,
Department of Mathematics,
PHILADELPHIA, Pa (Etats-Unis)