LIAM O’CARROLL

Inverse and partially ordered semigroups

<http://www.numdam.org/item?id=SD_1971-1972__25_2_A10_0>
We follow the notation and terminology of CLIFFORD and PRESTON [2].

Let \(S \) be an inverse semigroup with semilattice of idempotents \(E \), and let \(\rho \) denote the minimum group congruence [5] on \(S \). Then \(S \) is said to be reduced if \(E\rho = E \) (SAITO [7] used the term proper), and a congruence \(\tau \) on \(S \) is called reduced if \(S/\tau \) is reduced.

THEOREM 1. - Let \(S \) be an inverse semigroup. Then the congruence generated by \(\rho \cap \mathcal{R} \) is the minimum reduced congruence on \(S \).

COROLLARY [7]. - If \(S \) is a reduced inverse semigroup, then \(\rho \cap \mathcal{R} \) is the identity congruence on \(S \).

The next result gives the structure of an arbitrary reduced inverse semigroup. The main idea behind the theorem is that each \(\rho \)-class of a reduced inverse semigroup is \(V \)-completed so as to build up an \(F \)-inverse semigroup; the structure of the latter is known [4], and the structure of the reduced inverse semigroup is then recovered. First, we introduce some notation.

Let \(E \) be a semilattice; then \(M(E) \) denotes the semilattice \(\{ a \leq H \leq E \mid EH = H \} \) under the operation of set multiplication. The mapping \(j : e \mapsto \text{End}(E) \) embeds \(E \) isomorphically in \(M(E) \). Further, given a group \(G \), a family \(\theta(G) = \{ \theta_g \mid g \in G \} \) of endomorphisms of \(M(E) \) is called compatible if it satisfies conditions (i), (ii) and (iii) of [4], theorem 4 for the semilattice \(M(E) \), together with the further condition:

(iv) \(\text{For each } F \in M(E) \text{ and } g \in G, F\theta_g = \bigcup \{(Ef)\theta_g \mid f \in F\} \).

Thus the family \(\theta(G) \) is specified by its action on \(E\jmath \).

THEOREM 2. - Let \(E \) be a semilattice, \(G \) a group, and \(\theta(G) \) a compatible family of endomorphisms of \(M(E) \). Denote by \([E; G; \theta] \) the set \(\{ (Ee, g) \mid e \in E, g \in G, e \in E\theta_g \} \) under the operation

\[
(Ee, g)(Ef, h) = (Ee, (Ef)\theta_g, gh).
\]
Then \([E ; G ; \phi]\) is a reduced inverse semigroup, with semilattice of idempotents isomorphic to \(E\), and maximal group homomorphic image \(G\).

Conversely, given a reduced inverse semigroup \(S\) with semilattice of idempotents \(E\), \(S = [E ; S/\rho ; \phi]\) where for each \(H \in \mathcal{W}(E)\) and \(a \in S\), \(H \phi_a\) equals the set product \(a \rho. H.(a \rho)^{-1}\).

COROLLARY. - An inverse semigroup \(S\) with semilattice of idempotents \(E\) is isomorphic to a semidirect product of a semilattice and a group if and only if

\[E = \{xx^{-1} \mid x \in a \rho\}\]

for each \(a \in S\) and \(S\) is reduced; equivalently, if and only if \(E = a \rho. (a \rho)^{-1}\) for each \(a \in S\).

The theory has interesting specialisations to the semilattice of groups and bi-simple inverse cases.

The \(V\)-completion of the \(\rho\)-classes is accomplished by applying a theorem in the theory of partially ordered semigroups ([6], theorem 3 with \(S\) a reduced inverse semigroup under the natural order, \(\alpha = \rho^\mathcal{W}\) and \(D = S/\rho\) under the trivial order). For partially ordered semigroups, the following weaker result is obtained, generalising the main result of [3]:

THEOREM 3. - Let \(S\) be a partially ordered semigroup. Then \(S\) is a strict A-nomal quasi residuated semigroup whose maximal elements form the group of units of \(S\) if and only if \(S\) is a semidirect product of \(E\) by \(G\), where \(E\) is a quasi residuated semigroup with maximum element which is its identity element, and \(G\) is a trivially ordered group.

In theorem 3, \(\rho\) is taken to be the zig-zag congruence \([1]\) (see \([8]\)), and \(S\) being strict means that each \(\rho\)-class has a maximum element and that \(S\) has an identity \(1\) which is the maximum element in \(1 \rho\). In the semidirect product, the Cartesian ordering is employed, and the structural anti-homomorphism maps the \(G\) into the group of multiplicative, and order, automorphisms of \(E\).

BIBLIOGRAPHY

(Texte reçu le 16 mai 1973)

Liam O'CARROLL
University of Edinburg
The Mathematical Institute
20 Chambers Street
EDINBURG, EH1 1HZ (Grande-Bretagne)