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Séminaire de Probabilités XVI
1980/81

A.S. APPROXIMATION RESULTS
FOR MULTIPLICATIVE STOCHASTIC INTEGRALS

by R.L. Karandikar

This note is a contribution to the theory of the multiplicative
integral for continuous semimartingales. Let ((,,#,P) be a complete pro-
bability space with a filtration (3t) which satisfies the usual condi-
tions, and let X be a continuous semimartingale with values in the space
L(d) of all dxd matrices, and such that X(0)=0. The multiplicative inte-

gral

t
(1) (%) = IOI (T+dx)
can be defined as the only solution to the stochastic differential equa-
tion
t
) Y(6) = I +/ Y(s)dX(s)
0]

and has been extensively studied ( see Ibero [6], Emery [4], [5] in the
right continuous case, and see also in a different context Masani [#] ).
We shall also call Y the exponential of X and denote it by e(X). If we
replace in (1) dX by hdX , where h is a predictable, L(d)-valued pro-
cess, then Y is called the ( left ) multiplicative integral of h with
respect to X. More details will be given below.

Our first result will be an explicit formula for the inverse of Y,
which we haven't found in the literature, though it is very simple, and
its proof is easy.

In the second part of this paper, we shall deal with a.s. approxima-
tions to the multiplicative integral. These results are less general than
those of Bichteler in [4], [2], but our proofs are so elementary ( they
do not use anything deeper than Doob's maximal inequality ), that the
editors of the Séminaire offered to publish them in this volume. The same
method also gives a.s. convergence results for ordinary stochastic inte-
grals.

The author wishes to thank Professor B.V. Rao for his useful sugges-
tions and fruitful discussions, and the editors of the Séminaire de Proba-
bilité for this publication.

1. Prof. P.A. Meyer has pointed out to us that our main lemma is very clo-

se to the method of Métivier and Pellaumail, except that continuity
simplifies things a great deal.
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I. A FORMULA FOR THE INVERSE OF Y

We first introduce some notation. Let X be a continuous L(d)-valued
semimartingale, and H be a locally bounded predictable L(d)-valued pro-
cess. Then we denote by HeX as usual the stochastic integral [HdX. On
the other hand, since L(d) isn't commutative, we may consider right sto-
chastic integrals [(dX)H . To avoid ambiguities, we denote them ( in
this section only ) as X:H . Obviously (X:H) = (H'.X')', where ! is
the transpose operation.

Given two continuous semimartingales U,V with values in L(d), we
denote by <U,V> the L(d)-valued process ( continuous, with finite varia-
tion paths ) defined by )

I, = <uivEs

J k k3
The following identities are trivially proved by looking at the entries
(3) a(Uv) = Uav + (aU)V + 4<U,V>
) < H.U,V> = H.<U,V> , < U,V:H > = <U,V>:H

It is obvious that <U,V>=0 if U or V is a finite variation process. We
denote by €°(X) the right exponential of X , i.e. the solution of the
stochastic differential equation symmetric to (2)

+
(5) Y(t) = I + é aX(s)Y"(s)

We have e°(X)=e(X')'. With these notations :
THEOREM 1. The inverse of Y=e(X) is given by
6) vl ler(x + <x )W

PROOF. Set U=e(X), V=¢°(-X+<X,X>), so that dU=UdX, dV=(-dX+d<X,X>)V.

We apply (3) and compute UdV=U((-dX+d<X,X>)V), (dU)V=(UdX)V, and from
the obvious a@sociativity of the left and right stochastic integration,
the position of the parentheses doesn't matter. On the other hand, from
(4) a<u,v> = Ud<X,V> = -U(d<X,X>V). 8o finally d(UV)=0, and since UV=I
at time O it remains equal to I for all t. The theorem is proved.

IT. APPROXIMATION TO THE EXPONENTIAL BY ITERATION

Let again X be a continuous L(d)-valued semimartingale with X(0)=0,
and Y be its exponential. We are going to prove in this section :
THEOREM 2. The processes defined inductively by

t
) Y=L , Yn+1(t) =T + é In(s)dX(s)

converge a.s. to Y , uniformly on compact intervals of m+ .
If we replace a.s. convergence by convergence in probability, the

1. This is related to th. I.2 of Bismut, Sem. Prob. XII p. 1%.
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result is well known for general stochastic equations and without con-
tinuity hypothesis on X ( Emery [§], p. 290 ). In the same general set-
up, an a.s. convergence result is stated in Bichteler [2]. So theorem 2
isn't new, but its proof possibly is, and depends on quite elementary
results. We are going to prove it first under the following auxiliary

hypothesis on X :

(85) X;:Mg + Ag 3 M; is a local martingale with M;(O):O 3 A% is a
process with finite variatiop paths 3 each one of the increasing
processes < M;,M; ]dAg(s)l satisfies a Lipschitz condition
of order B . O

We then use a lemma from our paper [8] ( a sketch of the proof will be
given at the end for the reader's convenience ). Here || ” denotes a norm
on L(d) ( to make a definite choice, identify L(d) to Bd and use the
euclidean norm ). Given a L(d)-valued process Z, set HZ"t
Then :

LEMMA. If X satisfies (8 ) and H is left continuous and predictable,
we have

(9

8d a(1+t9)/ E[ [y || Jds .

Taking this for granted, we prove theorem 2 under (85). Ve set

Sp = inf{t : ”YHth }. Replacing X by the stopped process PN amounts

to stopping at S all the processes concerned, in partlcular Y, Y . We
first assume that Y is bounded. Then set ¢ (t)= E[[Y, -Y“ ; since
n l-Y (Y -Y).X, the lemma glves us

bay1 (8 5 CCL48t)/ “6_(s)as

Let M be a bound for ¢ . Then an easy induction shows that ¢ (%) is
dominated by M(C(l+at)tg)‘n/n! therefore the T.V. o Iy Yllt has a
finite expectation, and/ls a.s. finite. If Y isn't bounded we apply
this result to I and let m - ® , reaching the same conclusion.
Hence Yn converges a.s. to Y, uniformly on finite intervals.

To end the proof, we just remark that we can reduce to (81) by a
strictly increasing change of time at=inf{s H As>t}, where As is the
continuous, strictly increasing process s .

0 A = + D..<Muis o+ o=, "
(19 s = °® 1j <7575 7. ij (/, aay]
This step is certainly familiar to readers of this volume ( see for ins-
tance Kazamaki [9] ,[10] : these papers were pointed to us by Prof. P.A.
Meyer ). So we omit the easy details.
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IITI. APPROXIMATION DY RIEMANN SUMS AND PRODUCTS

In this section, we consider a process g with values in L(4),
adapted, right continuous with left limits, and define the semimartinga-
le Z = fg_dX ( since X is continuous, we might as well write g instead
of g_ , but we keep the standard notation ). We are going to express
Z as the a.s. limit of Riemann sums, and Y=e(Z) as the a.s. limit of
<< Riemann products >> . Incidently, let us mention that this last result
doesn't follow directly from Bichteler's theorems.

For each n, we consider a sequence of stopping times (Tﬁ)kzo,l,..
increasing with k, such that

X(t)-X(T2 2B
an Tg ) [X(E)-X(T | <

leCt-)-g(TD < 27

Of course such a sequence exists, and can be explicitly constructed by

n on
for te]Tk,Tk+l]

induction, but our result depends on (11) only, not on the explicit cons-
truction. We define additive and multiplicative Riemann sums as follows

( 2, (t) = £, g(TP)(X(SATL 1 )-X(BATY))
12)
Y () = T (T + g(T)(X(6ATY, ) -X(6AT)) )

With these notation, we can state :

THEOREM 3. The processes Zn,Yn a.5. converge uniformly on compact sets
to the corresponding processes

t
Z, = ]tg_dX y Y= e(2)y = TT( I+g_dx) .
0 0

Here again, we may reduce by a change of time to the case of a semi-
martingale X which satisfies hypothesis (Bﬁ) with p=1l. It is necessary
to remark here that the change of time transforms stopping times into stop-
ping times, and preserves property (1l). It will be convenient also to
assume that ail the processes g, Y, 7, Yn, Zn are bounded ( by constants
which may depend on n ). The construction of convenient times Sm is a
little more delicate here, and requires an application of the Borel-Cantel-
1i lemma as in Dellacherie [3], p. 743, th. 4 . Remark that g is right
continuous, and must be stopped at Smr to get boundedness. After these
preliminary steps, the theorem will be deduced from the lemma, with a
little more difficulty than in the preceding proof.

Given any process H, define J H as the right continuous step process

equal to H(Tﬁ) on the interval [Ti, T§+1[. One checks easily that

(13) T, = B (Te (B(oATR, )2, (6AID) ) = Tef U3,¥ (s-)az,(s)

sz, = ét 7_g(s-)aX(s)
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Since |g|| is bounded by some constant C; and X satisfies (8), Z=g_-X
satisfies (Sa) for a suitable constant « ( depending only on Cl and

the dimension 4 ), and the same is true for Z, according to (14). Apply-
ing the main lemma to the stochastic 1ntegra1 Z -z = (J g-g) X with

X satisfying to (8 ) and ”J g-gll <2 M gives an 1nequa11ty

B |z, -2I%° 1 g 83%a(1+ta)t 2750

from which the a.s. convergence of Zn to 2 on compact intervals fol-
lows at once.

Let us study the convergence of Yn to Y. Since we aren't interested
in the exact value of the constants, we assume t varies in a compact in-
terval [O,M], and denote simply by a,b,c,... numbers which may change
from place to place, with the only restriction that they shouldn't de-
pend on n.

We write (13) in the following way

Y Y = (I Y <Y ) _eZ + (Y,-Y)_+Z + Y_e(% ~Z)

T *+No+0y (say )
We recall that Y is assumed to be bounded by some constant C. Then the
main lemma applied to the last term gives us as above

(15)  E[In5 1] g 86%a%a(1rta)s 2R ¢ a 272 ir te[0,M]
Also, Yn is bounded by Cn . Therefore
_ *2
o () = B[ ¥, ~Y "]

is a bounded function, and the main lemma gives us

*2 2 t t
(16) E[n,l57] < 8a a(l+ta)é ¢, (s)ds < bé ¢, (s)as
The first term is a little more delicate. We remark that it can also be
written as J'nYn(JnZn -Z_) = a product, not a stochastic integral - and
n
that we have on [Tp,Tp [ (3.2 -2 ), = f Tp8(s-)aX_ = g(TP-)(X - ),

which is dominated in absolute value by k 012 “I . On the other hand
we may apply the main lemma to formula (13) to get a << Gronwall type

formula >> for E[[Y, "t ], from which we get
B[ [[Y, I 1 < K™ , bounded for te[0,u]
from which we deduce

(an E[Hn1H§2] < ¢2  for te[0,M]
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Adding these inequalities ( with a little care, because of the exponent
2 ) and recalling that ¢n(t) = E[”Yn-Yuza] ), we get ( with new constants
a,b )
-2n k7]
bn(t) < a2 + bé ¢n(s)ds , te[0,M]

Therefore én(t) < c(M)2"211 from Gronwall's inequality, on the compact
interval [0,M]. The Borel-Cantelli lemma now implies the a.s. convergence
of Yn to Y .

IV. SOME OTHER MULTIPLICATIVE INTEGRALS

Emery has studied in [4] multiplicative integrals of the following
kind +
(18) Yt = T;T h(ax)
where h is a c3 mapping from L(4) to L(d) such that h(0)=I. The most
important among them concerns the matrix expomential, which turns out
to be the stochastic exponential in the Stratonovitch sense

% b
(19) Y, = T;T R T;T (I+aX +3ax,%)

In a similar way, all the multiplicative integrals (18) can be reduced
to ordinary multiplicative integrals relative to a semimartingale X% =
étf(dXs), and Emery shows that the obvious Riemann products for (18)
converge uniformly in probability to the multiplicative integral. An
adaptation of our method shows that, for continuous semimartingales,
Riemann products relative to random partitions satisfying (11) will
converge uniformly a.se. to the multiplicative integral. The principle of
the proof remains exactly the same, but the computations are a little

more cumbersome.

V. ON THE MAIN LEMMA

HeX is a dxd matrix. It will be sufficient to prove the following
inequality for fixed i,j and to sum it gver i,j2
i k2 i
E[ |2, Hk-xj|t ] < 8aR(1+tR)I, é E[ (H ) ]ds

<
We split X? into M? and Ag ; it is sufficient to prove that

t .
48 é B[ (8] )?]ds

A

Bl |3, HpenSlE]

i akyx2
E[ lzk H;'Ajlt ]

IA

2 t i 2
ap“t 3 é B[ (H; )" ]ds
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First inequality : IEk / Hl k|2 < 4z (/ Hlde)z, hence the same inequa-

lity for the correspondlng sup. From Doob's maximal inequality and the
1sometr§ of the L2 stochastic %ntegral we get on the right

“anB(/ H1d<Mk,Mk> S 44pE(z, [ B[H 12 14s.

Second 1nequa11ty : We start in the same way and replace (Hl-A )t by
t

% | lldAkl) B (/ |Hl lds) < B t/ ( ) ds. Then we integrate.

As we mentloned in the footnote to the introduction, this lemma
is a Métivier-Pellaumail inequality ( see for instance Emery's report
in the preceding volume of the seminar, vol XIV p. 118'), with dt as the
<< controlling process >>.
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