SVEND ERIK GRAVERSEN MURALI RAO Hypothesis (B) of Hunt

Séminaire de probabilités (Strasbourg), tome 16 (1982), p. 509-514 http://www.numdam.org/item?id=SPS_1982_16_509_0

© Springer-Verlag, Berlin Heidelberg New York, 1982, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

HYPOTHESIS (B) OF HUNT

S.E. Graversen* and Murali Rao**

For a strong Markov process X_t with a locally compact econd Countable State Space, Hunt's Hypothesis (B) may be tated

$$P_{G}P_{K} = P_{K}$$

or all compact K and open G containing K. There are equivalent statements of hypothesis (B):

- 1) The hitting time to any set of the process X_{t-} is the same as that of X_{+} ;
- The probability is zero that the process belongs to a given Semipolar set at any time of discontinuity;
- 3) If $\alpha > 0$, Hypothesis (B) is equivalent to [2]

$$P_{G}^{\alpha}P_{K}^{1} = P_{K}^{\alpha}$$

In this note we remove the restriction that $\alpha > 0$, assuming hat we have a transient Markov process satisfying Hypothesis L). There are instances where it is easiest to verify the above hen $\alpha = 0$ hence such a result is not without interest.

In the proof sets of the form $(P_k^1 = 1 \text{ for thin sets } K$ lay an important role. We show that non-existence of such sets mplies hypothesis (B) provided of course that (O) is valid hen $\alpha = 0$. It is also shown in the end that a set of the type $P_k^1 = 1$) is finely open so that unless empty it is rather "large".

Thanks are due to Professor K.L.Chung and J.Azema for ncouragement.

Notation will be as in [1]. Aarhus University

** University of Florida

Let $K = K_0$ be a Borel set contained in a given compact set. Define for each countable ordinal γ a set K_{γ} as follows

$$\begin{aligned} \kappa_{\gamma+1} &= (x \in \kappa_{\gamma}: \mathbb{P}_{K_{\gamma}}^{-1}(x) = 1) \\ \kappa_{\gamma} &= \bigcap_{\beta < \gamma} \kappa_{\beta} \quad \text{if } \gamma \text{ is a limit ordinal.} \end{aligned}$$

Put

$$A = \bigcap_{Y} K_{Y}$$
.

Lemma 1. The set A is Borel and

(1)
$$A \subset (x:P_A^{1}(x) = 1).$$

<u>Proof</u>. Hypothesis (L) implies that K_{γ} is a Borel set for all countable ordinals γ . Let ξ denote a probability reference measure. As $\phi(\gamma) = E^{\xi}(\exp(-T_{K_{\gamma}}))$ is non-increasing there is a countable ordinal β such that $\phi(\gamma) = \phi(\beta)$ for all $\gamma \ge \beta$.

If $x \in K_{\beta+1}$, $p^{X}(T_{K_{\beta}} < \infty) = 1$ and hence $P^{X}(T_{K_{\beta+1}} < \infty) = 1$ i.e. $x \in K_{\beta+1}$ and hence $x \in K_{\beta+2}$ etc.

Therefore for all $Y \ge \beta$ K_Y is the same K_{β+1}. That is to say $A = K_{\beta+1}$ is Borel. The assertion is proved.

A Borel set B is called thin if $P_B^1(x) = E^x(exp(-T_B)) < 1$ for all x. It is called totally thin if there exists $\eta < 1$ such that

$$P_p^{1}(x) \leq \eta < 1$$
 for all $x \in B$.

Ising Theorem 11.4 p.62 of [1] it is seen that the successive utting times to a totally thin set must increase to infinity almost surely.

Lemma 2. Let A be as in Lemma 1. Assume the process is cransient. If A is totally thin then A is empty.

<u>Proof</u>. A being relatively compact the last exit time L from A is finite almost surely. But A being totally thin the successive hitting times tend to infinity almost surely. But by (1) for $x \in A$ all successive hitting times to A are finite almost surely. Since all these are less or equal to L, transience is violated. The Lemma follows.

<u>Theorem 3</u>. Assume transience and hypothesis (L). If for all compact K and all open G containing K

$$P_{G}P_{K}^{1} = P_{K}^{1}$$

then $P_{G}P_{K} = P_{K}$, namely hypothesis (B) holds.

<u>Proof</u>. The arguments of p.p. 70-71 of [2] show that for the validity of hypothesis (B) it is sufficient to prove that for each totally thin set K contained in an open set G we have for each x

$$P^{X}(T_{G} = T_{K}, T_{G} < \infty) = 0.$$

Using the notation above we now show that on the set $(T_G = T_K < \infty)$

we have

(4)
$$X_{T_G} \in K_{\gamma}$$
 for every γ countable ordinal.

This is trivial if $\gamma = 0$. Assuming (4) is valid for a particular γ . On the set $(T_G = T_K < \infty)$ we have $T_G = T_K$. By (2) with $K = K_V$

(5)
$$P_{G}P_{K_{\gamma}}^{1}(x) = P_{K_{\gamma}}^{1}(x).$$

From (5) we deduce

$$E^{\mathbf{X}}[P_{\mathbf{K}_{\gamma}} | (\mathbf{X}_{\mathbf{T}_{\mathbf{G}}}), \mathbf{T}_{\mathbf{G}} = \mathbf{T}_{\mathbf{K}_{\gamma}} < \infty]$$
$$= P^{\mathbf{X}}[\mathbf{T}_{\mathbf{G}} = \mathbf{T}_{\mathbf{K}_{\gamma}} < \infty]$$

which implies that $X_{T_G} \in K_{\gamma+1}$ on $T_G = T_K < \infty$.

Next if γ is a limit ordinal, $X_{T_G} \in K_{\beta}$ for $\beta < \gamma$, trivially implies $X_{T_G} \in K_{\gamma}$. Thus $X_{T_G} \in A$. But by Lemma 2 this set is empty. The proof is complete.

Complements

The assumptions will be as above.

Theorem 4. Let K denote a thin Borel set. Then the set

(6)
$$B = \{P_{\chi} | 1 = 1\}$$

is a finely open and closed Borel set. In particular it has positive 5-measure unless it is empty. 5 is an exessive reference measure. <u>Proof.</u> B is Borel and finely closed by definition. Since does not have regular points, it is sufficient to show that or all $x \in B$,

7)
$$P^{X}[X_{t} \in B \text{ for all } 0 < t < T_{K}] = 1.$$

ut

$$s = P_{K}^{1}$$
.

hen $x \notin B$ iff s(x) < 1. In other words

$$B^{C} = \bigcup_{n} A_{n}, A_{n} = (s \le 1 - \frac{1}{n}).$$

7) follows if we show

8)
$$P^{X}[T_{n} < T] = 0, x \in B$$

where $T_n = T_{A_n}$ and $T = T_K$.

But by strong Markov property and the fact that s(x) = 1'or $x \in B$ we have

$$P^{X}[T_{n} < T] = E^{X}[s(X_{T_{n}}), T_{n} < T]$$

$$\leq (1 - \frac{1}{n})P_{X}[T_{n} < T < \infty]$$

because A_n being finely closed, X_{T_n} belongs to A_n . That completes the proof.

If B and K are as above and B is not empty, it is intuitively clear that the last exit from K is at least as large as the last exit time from B. Let us supply a proof. Since B is finely open it is clear that the last exit time L from B satisfies

 $L = sup(t > 0, t \in Q, x_{+} \in B)$

where Q denotes the set of rationals. Write

$$A = ((t, w): X_t \in B \text{ and } t \in Q).$$

A is optional with countable sections. There exists stopping times T_n with disjoint graphs $[T_n]$ such that

$$A = \bigcup_{n} [T_{n}].$$

For every x, M denoting the last exit from K

$$P^{X}(M \ge T_{n}, T_{n} < \infty) \ge P^{X}[T_{n} + T_{K}(\theta_{T_{n}}) < \infty]$$
$$= E^{X}[P_{K}1(X_{T_{n}}), T_{n} < \infty] = P^{X}[T_{n} < \infty]$$

namely $M \ge T_n$ on the set $T_n < \infty$, $P^X - a.s.$ That completes the proof.

References

- [1] R.M.Blumenthal and R.K.Getoor: <u>Markov Processes and Potential</u> <u>theory</u>. Academic Press (1968).
- [2] P.A.Meyer: <u>Processes du Markov et la Frontiere du Martin</u>. Springer Lecture Notes Vol 77 (1968).