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An integral representation of randomized

probabilities and its applications.

By

Nassif Ghoussoub.

0. Introduction: In this paper, we study the topological and extremal

properties of the set of random probabilit ies on a compact space.

Our main goal is to give a Choquet-type integral representation for

the measure theoret ic notions to which one can associate a random

probability.

The representation applied, for instance, to randomized stopping

times shows that they are averages of true stopping times. The

behaviour of some stochastic processes on randomized stopping times

can then be easily understood from the behaviour of these processes

on the genuine ones. As an immediate application, we give a proof of .

the Baxter-Chacon compactness argument .and of an optimal stopping problem.

Applied to positive operators on Ll and C(K), , the representation

implies that such operators are averages of point transformations:

a useful fact for extending some properties which are easily verifiable

in the case of operators induced by point transformations to more

general operators. For an example we give a proof of the Ricsz-Thorin

convexity theorem.

The above representation also implies that op erators on Ll of

a compact group are actually randomized multipliers and they become

convolution operators, that is averages of translations, only if they
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commute with these translations. We also discuss the possibility of

associating to any transition probability on a compact space K, , a

Markov chain induced by a random walk on a group operating "measurably"

on K. .

Finally, we study the connection between the various types of

convergence of a sequence of operators on L1 and the convergence

of the measures supported by the space of point transformations,

which represent these operators. We show that while vague convergence

of the representing measures already implies mean convergence of the

operators, almost sure convergence is implied by a stronger topology

naturally imposed on these representing measures.

It is my pleasure to thank M. Emery, J. Fournier and E. Perkins

for the very stimulating and helpful discussions during the preparation

of this paper.

I. Integral representation of random probabilities:

Let K be a compact separable space and let be a

probability space. Denote by

. C the Banach space C (K) ) of all C(K)-valued Bochner integrable

random variables. Recall [13] that the dual of C is (K))

of all random measures measurable for the weak-star

Borel subsets of M(K) and such that ess sup| w[(K) is finite.

Consider the set D = ~u E C* ; u > 0, ~~ S 1 and u(1) = 1}

where 1 is the unit process in C. . Clearly D is a weak-star

compact convex subset of C . . In the sequel we want to identify the

extreme points of D in order to apply Choquet’s integral representation.

For that, consider the convex set Dl of all probability measures on

K x 0 (equipped with the product o-field) such that their projection

on 0 is P. . Let P(K) be the set of probability measures on K . .
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Lemma I.1: There exists an affine bijection between D1 and D . .

Proof: Let v be in D1 . . Since K is compact, every probability

measure on K is tight, hence by L8U , , there exists a strict

disintegration of v with respect to the projection pr:K  03A9 -)- n and

P. . That is an application v:w +v 
w 

from n into P(K) such that 
.

for every Borel subset B of K, t w -~ vw(B) is measurable. It

is then clear that v E: D . .

On the other hand, if v E: D, define the measure v on K  03A9 by

v(A x B) = fBvw(A)dP(w) whenever A is Borel in K and

BE:F.

It is clear that v extends to the product 03C3-field on K  03A9

and that the projection of v on n is P. . The representation is

unique, since the processes of the form f(t)~g(w) where f E: C(K) and

g ~ L1(03A9) belong to C and they generate the whole product 03C3-field

by the monotone class theorem. The uniqueness implies that is

affine.

For any measurable function o : S~ i K , , denote by 6 the random

measure associated to the measure on the product K  03A9 def ined by X ~ E[X03C3]
for any X E C . .

Proposition 1.2: a) D is Q(C*, C) compact and convex and is separable

whenever the o-field F is.

b) The extreme points of D are the random measures 6 where o is a

measurable function from n into K. .

Proof: a) If F is a separable o-field, then is a

separable Banach space since C(K) is. It follows that the dual ball

is a metrizable weak-star compact convex set.
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b) Follows from the first lemma and the well known fact that the

extreme points of the set of probability measures on S~x K whose

projection on i~ is P , , are the measures supported by the measurable

graphs from 0 into K. . (See for instance C15]). .

Denote now by G the space of all measurable functions from S~

to K and let d be the metric on K . . We say that (Qn) in G

converges in probability to Q in G, if for any E > 0 ,

lim P{w ~ 03A9 ; d(03C3n(w),03C3(w)) ~ ~} = 0

Lemma I.3: If 03C3n,03C3 are in G , then 03C3n + 03C3 in probability if and
*

only if 6 converges to 6 in Q (C , C) . .
n

- Proof: : Suppose Qn 
+ Q in probability. . For any f E C(K) , , ~f 

converges then in probability to f(Q) and since (f(Qn))n is bounded

in , it converges in’ , hence for every

we get

g(w)f (t)03B403C3 . , dP ~ g(w) . , f (t) . . 03B403C3 . dP .
n /

S ince the linear span of ( g (w) . , f (t ) ; ; g E Ll (S~ ) , , f E C (K)}

is dense in C, , it follows that ao + 6Q in Q(C*,C) . .
n

Su p pose now d 
o 

+ a 
0 

in 6(C*,C) . . Take 0  E  ~ . . There exists

n

a partition {B1,B2,...,Bm,1} of S~ and elements in K

such that for every w in Bi, d (o (w) ,  E2 /2 . .
E2

Let f i be the function in C(K) def ined by fi(t) = d (t,ti) ’ 2
and let gi = XBi P(Bi) 

.and I 

Since 03B4 + 8 in 

. 

we get that for every gE and
Q Q
n

f E C(K), , there exists N so that if n Z N we have

|k g(w)f(t)(03B403C3n - 03B403C3)dP | ~ ~2/2 .

Q 
K 

n
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Applying this to the f inite family , we get N so that

if n ~ N

I ~ Ez/2 .

for any 1_i_m . . 
Bi

Since 1 P(Bi) Bid(03C3,ti)dP ~ ~2/2 ,

It f ollows that for any 1 s i ~ m and n ~ N

f d(on,ti)dP  

Bi
That is

P«d(on,ti) > E) nBi) _ eP(Bi)

Hence

cP(Bi) .

and P(d(03C3n,03C3) ~ ~) ~ ~ .

Identify now the elements in G which are equal almost everywhere.

The metric d defined on the equivalence classes of elements in G

by

d(Q,~r) = 
,

defines clearly a topology on G which coincides with the topology

of convergence in probability and that (G,d) is a separable complete

metric space. . 
’

Denote by A(D) the space of all affine continuous functions 
on D . .

Fa each element X= (Xt (w) ) and each random measure (uw)w in

C , , the duality map is then defined by
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~X~u ~ - = 

where E is the expectation with respect to P. . If o E G, we

shall denote by E[X ] the expression X,6 ~ . .

Theorem 1.4: To any random probability ~ in D , , we can associate

a probability Radon measure p on (G,d) such that

1) For any X in C, ~X,u~ = G E[X 
2) A(D) is dense in L1 (G, u ) . N

Proof: By the Choquet representation theorem C4~ applied to the convex

compact set D and y , there exists a maximal and simplicial Radon .

measure p on the extreme points of D (that is (G,d)) such that

A(D) = L 1 (u) and for any h E A(D) we have

h( ) = Gh(03C3)d (03C3)

Now, it is just enough to notice that any X E C, defines an

element in A(D) by the map v i ~ X,v ~ . .

We shall see later that this representation is not unique, that is

D is not a simplex.

II. Increasing rocesses and related notions:

a) Increasing processes : Suppose now K to be the interval .

An increasing process is a map -)- satisfying the

following properties

(i) (At) is right continuous from [0,~] into Ll . .

(ii) for all t ~ s

Let D be the set of all increasing processes (At) such that

A = 1. ° It is then easy to show that to any random probability
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in D , one can associate a unique increasing process in D2
such that

A t (w) a.s.

The extreme points of D2 are then the increasing processes of

the f orm At (w) = I IO t] (° (w) ) , where o is a measurable map from 
’

n to [0,~] . .

Let now Bl = the space of measurable processes (Xt(w)) so that

sup ( E . Then every element X E B def ines a bounded affine
t 

t 1

function on D2 via the map

X : (At) ~ E ~0XtdAt
where a cadlag version of A has been chosen. The above representation

says then that for any in ’ there exists a Radon probability

measure u on the space G2 of all measurable maps from S~ into 

so that f or any XE C , ,

E~0XtdAt = G2E[X03C3]d (03C3)

The above equation holds also for any X E B 1 since they verify the

barycentric formula.

In this case, u can be chosen in a natural way, since if we take

the increasing process which is the inverse of (At) , , that is

Bt = inf {s ; t} then

E~0XtdAt = 10E[XBt]dt

and u can be chosen to be the image of the Lebesgue measure on [0,1]

by the map B : : [0,1]-~G2 . . (It is easy to see that B is measurable

when G2 is equ ipped with the Borel 0 - field generated by the topology

of convergence in probability).
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We noted that C embeds in A(D) in a natural way and in general

C+]R is dense in A(D) . . However, in case , one can as-

sociate to any aff ine and continuous function h on D2 , , a process

Y in such that

n(03B403C3) = E[Y03C3]

To sketch a proof of this fact, define for each t in and

~ 

H , the function from Q into equal to t on H

and 0 elsewhere.

For each t , , define

Qt (H) 

Qt is additive since, if H n H’ _ ~ then

H’) = h(8o) - h ) = h(do) - h )
= h (03B4o )- h(03B403C3t,H - 03B403C3t,H,) + h(03B403C3t,H ^03B403C3t,H,) A6 

= h(03B4o) - h(03B403C3t,H )+h(03B4o)-h(03B403C3t,H, )

°

If Hn ~03C6, ’ then a t,H 
n 

converges to 0 in probability and Q t (H ) n
converges to zero by the continuity of h. . It is also clear that Q

. dQ 
’

is absolutely continuous with respect to P. . Let Xt - dP ’ .

Since h is affine and continuous, it is Lipschitz with

Lipschitz constant equal to K say. For all t and s we have

I Xt - xJdP = Var(Qt - 

sup {03A3 |Qt(Hi) - Qs(Hi)| ; (Hi) partition of 03A9} ~
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sup { K d (03C3t,Hi , 03C3s,Hi); partition of 03A9} ~

sup {03A3 K|t-s|P(Hi) ; (Hi) partition = l

It is standard to show that there exists a modification of X

which is separable and measurable. The same proof as above shows

that for any simple functions a and T in G we have

|X03C4 - X03C3|dP ~ Kd (T,Q)

It follows that (Xt) has a modification which is continuous.

Note now that for any sequence of simple , we have

K d {0, on) _ K ; ; That is sup ~dP  ~ . . By Fatou’s
n ~ 

n n

lemma, we get that sup )  co 
, let now

aEG

T = mind ; ; Xt (w) = max , we get that

sup|Xt | dP ~ |X03C4 | dP  ~ and X E C . .

The process Yt = h(8o) - Xt will do the job.

Note that in general or (K) = R ) D(hence Dl
and D2) is not a Choquet simplex, that is the maximal representing

measure is not unique. For an example it is enough to take S~= ~0,1}

and P the probability assigning 1/2 to each of the sets ~0~ and

{1}. 

Let At(0)=At(1)= 
1/2 if 0~t1

1 if t = 1

Let , i=1,2,3,4 be maps from {0,1} to j0,lJ defined by

_ j I 
if w=0 

0’2 
o if w=0

Q1 0 if w = 1 
02 1 if w =1
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° ~0 
if w=0 

~ 
l if w=0

~3") ~0 if w =1 ~4’) ~1 if w = 1

It is immediate that

At = 1 2 I[0,t](03C31) +1 2 I[0,t](03C32) = 1 2 I[0,t](03C33)+1 2 I[0,t](03C34) .
However, we have the following

Proposition II.1 : The map is a simplicial selection from

D onto P(G2) where B is the inverse of A and B o 03BB is the prob-

ability on G2 , , image by B of the Lebesgue measure X on [0,1] . .

Sketch of proof: To prove that A(D2) is dense in it is

enough to show that the space

L1[0,1]|there exists Xt (w) lower semi-continuous on D2 and that f(t) = E[J)
is dense in L1j0,1] . . But this follows from the fact that X con-

tains the intervals a,b> since X(a,b)(s)=E[X]]Ba,Bb[[o B s] .

Let now (At) be a sequence of increasing processes in D 2
and let (u) be a sequence of representing probabilities on G2 . .

It is clear that there exists a subsequence (un ) which is vaguely

convergent to say  on C(D) , , hence (At) converges to (At) (the

baacenter of on every continuous function on D which verifies

the barycentric formula. That is essentially the Baxter-Chacon com-

pactness argument in the case we are dealing with a constant filtration.

Let A be the space of optional processes of class (D) . . Every

element X in Jll defines then a bounded affine function on D 3 via

the map X : At ~ E~0 XtdAt . (See [10]) .

Again, by the representation theorem we get a Radon probability

measure p on the space G3 of all Ft - stopping times so that for

any X E Al we have
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The following proposition reduces the topology of Baxter-Chacon

[ 1 ~ ] to the vague topology on M(D3) .

Proposition 11.2: : (Baxter-Chacon-Meyer) Every sequence (At) of

randomized stopping times has a subsequence (A n t k) such that for any

regular process of class (D) we have

E~0XtdAnkt ~ E~0XtdAt
where (At) is also a randomized stopping time.

For the proof it is enough to take u E M~D3) to be a cluster

point in the vague topology of a sequence in M(G3) represent-
nn 

ing (At) n . Then At = barycenter of u is a limit of (At) n on the

regular optional processes of class (D) since they induce bounded

affine maps on D3 , t verify the barycentric formula and are continuous

on G3 .
Again, one can show that the map At is a simplicial selec-

tion from D3 onto P(G3) where Bt is the time change associated to

At .
Note that the vague convergence of (un) is stronger than the con-

vergence of Baxter-Chacon, since the elements of C(D3) are not necess-

arily induced by processes and we do not know if the space ~4(D3) is

strictly larger than the space of optional regular processes of class

(D) .

Another immediate application of the representation above is the

following optimal stopping rule.

Proposition 11.3 For any regular process of class (D) (X~)
there exists a stopping time o such that E[X.- ]= sup E[X ]o 0 

Go
Proof : It is enough to notice that X : ~XtdAt is affine and con-

0
tinuous on the convex compact D3 , hence it attains its maximum on an

extreme point.
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b) Vector measures: 
’

Suppose now K= [0,1] . . Recall that an vector

measure F is a set function F from 8 (the Borel functions of

[0,1]) into so that 
.

(i) F(~) = 0 a.e.

00

(ii) F( u Bi) _ ~ F(Bi) for any disjoint B ,B ,... in 8 .
i=l i=1 

" ’ ’

Let D4 be the set of all positive vector

measures such that F[O,l] = 1 a.e. One can show (see (2]) the exis-

tence of a unique increasing process (A ) in D2 so that At =F[0,t]

a.e.

The extreme points of D4 are then the vector measures F of

the form

F(A) = X03C3-1(A) for some o : 03A9~ [0,1]

These are exactly the lattice orthogonally scattered measures

introduced in [14].

III. Integral representation of o erators:

Let now K be a Hausdorff topological space with a countable

basis and let À be a Radon probability on K. . Let T be a bounded

linear operator f rom into Ll (n,P) . . A disintegration

theorem of Fakhoury [9], , asserts that there exists and application

u ; i~ + M(K) so that

= Tl(w) v w where vw are Ra don probability measures on K

(ii) w ~ w is measurable if M(K) is equipped with the a-field of

weak-star Borel subsets.

(iii) Every f in is | w|-integrable for P-almost all w

and Tf(w) = Kf(t)d w(t) .

(iv) | w|dP(w) ~ ~T~.03BB
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By combining this disintegration result and the representation

of section I we get

Theorem 111.1: If K is compact and T is a positive bounded linear

operator from L-(K,B) into L-(~,F,P) , then there exists a

probability Radon measure  on (G,d) such that

1) For any f in L..(K,X) we have

Tf(w) = Tl(w) ) ’’G f(o(w))d?(o) for P-almost all w

2) A(D) is dense in 

Proof: Associate to T the random probability B) = in D .

By Theorem 1.4, there exists a probability measure  on (G,d)

verifying 2) and for any X in 

X,~ = 

For any B in F and f in C(K) , the process X(t,w) = 

belongs to C. Hence,

B(Kf(t)Tl(w)d w(t))dP = G( BT1(w)f(03C3(w))dP(w))d03BD(03C3)
That is

= -’G f 
In order to apply Fubini’s theorem on G we still have to

prove that for any B e F and f e C(K) the map

defined by = is measurable for the ? 8 P

completion of the product 03C3-field on G Actually, we prove

the existence of a measurable version of the map (o,w) -~ o(w) . That
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is a measurable map ~ : G -~ R so that f or each Q E G , , we have

for P-almost all w . .

= f(o(w)) for all f in C(K) . .

It is clear that whenever we integrate with P, , we can use

f instead of fo~ (o,w) , , and we shall do so for almost every-

where equalities.

Since (G,d) is separable, let (Qn) be a dense sequence in

G and let A r be the closed ball centered at o and of radius

r>0 . 

Fo r any r > Q , , we have G = n uA n,r 
’ Le t B 

n,r 
= A 

n,r 
B A 

m,r

and let 03C4n, r 
~ Bn, r 

if Bn, r ~0

.

For any k > 0 , , we have G = uB 1 . . Define now 

03C4n,k XB
n,1 k 

(03C3,w) . That is 03C8k(03C3,w) = 03C4n,1 k(w) whenever

03C3~ B

n,1.

k

For any e > 0, let ~,’ >_ ~ >- 2(1+E)2
We have

v ® > e:} =

P{w E ~ ; d(Tn~~(w) ~ Tn ~ ~~ (w)) > E)

~ 03A3 2Bn,1 l, 
1+~ ~ . d(03C4n,l,03C4n,l ,) .d(03C3)

~ 03A3Bn,1 l 1+~ ~ . 2 l . d(03C3) 2 ~ 2 (1+~) ~ . ~2 2(1+E ) = ~

is then Cauchy in probability, hence it converges to 03C8 .

A similar argument shows that far v almost all = 0 (w)
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P-almost everywhere. (Note that if K= [0,°°] one can choose

independently of T) . .

By applying Fubini’s theorem for any we get

Tf dr= T1 {w) 
That is for any f E C(K) Tf(w) = T1(w) I a. e .

Since C(K) is dense in L1(K,~) , , it is easy to show that the

above equation extends to all functions in L1(K,a) . .
Corollary 111.1: If T is any bounded linear operator from L1(K,a)
into , then there exists two probability measures ~1 and

t~2 on (G,d) such that for any f in we have

G 
For a proof it is enough to notice that every bounded linear op-

erator on L1 is the diff erence of two positive operator~ T+ and T

If now T is a positive operator from C(K) into ,

then T extends to an operator from L1(K,03BB) into L1(03A9,P) where

is the probability measure on K equal to P  T ~T1~1 . If we recall that

an operator f rom C(K) into is said to be regular if it is

the difference of two positive operators from C(K) into ,

then the above theorem applies and we get

Corollary III.2: If T is a regular operator from C(K) into 

then there exists two probability Radon measures 1 and 2 on G so

that for any feC(K) we have

Tf(w) = T+1(w) ~

Corollary III.3: a) If (At)t is an increasing process on , then

there exists a probability Radon measure u on G2 such that
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b) If (At) is a randomized stopping time then G2 may be replaced

by the set G3 of Ft-stopping times.

Proof: It is enough to notice that each increasing process def ines an

operator from the cadlag functions on j0,1] into by

Tf = ~0 f(t)dAt

where the integral is in the sense of Lebesque-Steltjes. Applying now

Corollary III.2 to the function X [0, > t] and note that a.e.

Corollary III.4: If F is a positive valued vector measure

on the Borel subsets of j0,1] , , then there exists a Radon probability

measure on G4 such that

F(A) =F[O,I] j f° any A E B . .

Proof: Following [6] , , there exists a measure a on [0,1] so that

X « F . . Moreover F def ines a positive operator from into

by

Tf = j fdF
where the integral is in the sense of Bartle-Dunford and Schwartz.

Recall that a tree in is a family of functions

; n’ 0,1,...; k=1,2,...,2n} in verifying

2~’n, k ~n+1, 2k-1 + ~’n+1, 2k each n, k . °

Let I = r-~ll _ , k be the diadic intervals of C0,1~ . .
n,k 2n 2n

Corollary 111.5: If ~) is a bounded positive tree in 

then there exists a Radon probability u on G such that for any

n and 1 ~ k ~ 2~ . .

03C8n,k = 2n03C80,1 Gx03C3-1(In,k)d(03C3)
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Proof: Associate to the tree (03C8n,k) the operator T from

L1[D,1] into defined by TXIn,k 2-n=03C8n,k for each n

and and which can be extended by linearity and continuity.

Apply then Theorem III.1 to T.

The above representation can be useful for extending some

properties which are easily verifiable in the case of operators

induced by point transformations to more general operators. Here is

an immediate application of this representation.

The Riesz-Thorin convexit theo.rem: Every bounded linear opereator on
L- , , whose restriction on is also bounded, induces a bounded

operator on each Lp , 1  p  ~ . . ,

Proof: Suppose that T is a positive operator on L1 so that

T1 E L. . For any f in Lp , I E Ll ) we have:

03A9 |Tf|pdP = 03A9 |T1 (w) ( p ) f |dP ~

03A9|T1|p-1G|T1||fp(03C3)|d03BD(03C3) dP ~

~T1~p-1~ . 03A9T|f|P.dP ~ ~T1~p-1~ . ~T1~ 1 
. ~fp~1

Hence ~T~p ~ ~T1~1-1 p~ . ~T~1 p1 
.

. Convolutions and multipl- iers:

Let K be a compact abelian group with a Haar measure a , ,

and let p be a positive Radon measure on K. . Define the convolution

operator on L1 (G) by

Tf (x) = 

It is clear that u is a representation of T in the sense

of theorem III.1. In this case u is actually supported by the set
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of translations on K which can be identified with K and is a

subset of G = {measurable transformations on K } . .

More generally, let G be a group operating on a topological

space K I If p is a positive Ra don measure on G, , one can

associate an operator on the bounded Borel functions on K by

Tf (x) .

The above theorem shows that any operator T on with

Tl = 1 , , is a "generalized" convolution where the canonical semi-group

operating "measurably" on K is the non-abelian semi-group of the

measurable transformations on K, equipped with the composition

operation.

We may also write Tf = f*u , , which makes T appear like a

"randomized" multiplier. Note also that

T2f(w) = G G f(03C303C4(w))d (03C4)d (03C3)

That is the nth iterate of T is given by the formula

Tnf = f *u n . .

It is enlightening at this stage to recall Wendell’s theorem

El2~ , , which asserts that an operator T on L1 of a compact abelian

group K, , which commutes with translations can be written as

Tf = f * p where p is a Radon measure on K. . The above

representation shows that the measure u always exists and that

if T commutes with translations, then u is supported by the group

of translations. To give a proof of this fact, it is simpler to use

the first representation, that is if T is a bounded linear operator

on , there exists a random measure u : K -~ M(K) such that

Tf (x) = ’’K ] f (t)d1J x (t) for X-almost all x.
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For each y E K, , denote by Ty the translation operator

associated to y. . That is T 
Y 
(x) = y , (T 

y 
f ) (x) = and

(Tyu) (f ) = u (Tyf ) , , where f is in L1 (K) and p is a Radon measure

on K. . Let e be the unit element in K.

The fact that T commutes with translations means that for

any x and y in K we have = 

uT 
x 
.

I f y = e, ’ we have T 
e 

= 
x 

for any x ~ K . That is for

any f in Ll (K) , ,

Tf(x) = x(f) = fK(xy)d (y) = K f(y-1x)d03BDe(y)
where v e is the image of u e by the map y + y 1 . .

Another way to see it, is to show that the extreme points of the

subset DS of D defined by

D5 = {( x) ~ D ; (03C4y x)x = ( 03C4yx)x for each y E K} , ’

are the random probabilities of the form 6 for some a in K. .
a

. Markov chains and random walks:

Let (K,B,~) be a compact separable space with a Radon

probability measure X on its Borel o-field B. . Let P be a

transition probability. . ,

Let G be the semi-group of measurable transformations

from K into itself. By Theorem [4] of C9~ and Corollary (2), ,

there exists a probability Radon measure u on G such that for

any A e B we have

P(x,A) = GxA(03C3x)d (03C3)

.
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Let P be the transition probability on G defined for any

a E G and bounded Borel function g on G by

P(03C3,g) =  * 03B403C3(g) = Gg(03C403C3)d (03C4) .
Let (03A9,F,Fn,Xn,P03C3) be the canonical Markov chain associated

to it [llJ; ; that is X : : (n, F) -)- G is a homogenuous Markov chain 
.

with respect to the a-field (F ) with transition probability P

and starting measures (P ) 
JeG 

.

Let Q = K x n, F = B0 F, , F n = Be F n and let e be the

identity transformation on K, , and Pe the probability associated

with the starting measure. 8e. . If v is a probability measure on

K, , we denote by P 
v 

the probability measure v 8 Pe F) . .

For w = (x,w) , set Yo (w) = x and

Y 
n 
(w) = X 

n 
(w) (x) (the transformation X 

n 
(w) applied to x )

One can show that (Y ) is a Markov chain on K with respect

to the a-algebras Fn with transition probability equal to P and

for any starting probability measure P . .

The chain is not the canonical chain associated to P. . But it

might be of interest to know that one can associate to any transition

probability, a Markov chain induced by a "pseudo random walk" on a

canonical semi-group G. The case of interest might be when p

is supported on the group G6 in G of all the invertible

transformations, since then X (w) can be written as

where the Zits are independent, identically distributed

and of law p .

An interesting problem will be then to characterize the set D6
of transition probabilities on K, t whose extreme points are the
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transition probab ilities induced by the invertible point transformations.

It is clear that in case K is a group, D6 contains , and the

Markov chains associated to elements in DS are the natural

extensions of the random walks.

VI. Stronger topologies on M{D) : :

Let be a sequence of random probabilities in D and let

be a sequence of probabilities on G representing (un) . , We

have already seen that the vague convergence of is stronger

than the weak convergence of Baxter-Chacon, since the elements of

C(D) unlike those of A(D) are not induced by processes in C. .

We shall see in the sequel that (un) may converge on a large space

of functions than C(D) and this convergence is strong enough to

imply in some cases almost sure convergence.

Since D is not a simplex, the representing measures on 

are not unique. To keep more control on the representation, we

prefer to select for each v E D , a maximal measure v on G

which is simplicial; that is one, which is extreme in the set of all

maximal measures representing v . . If 03BD is such a measure, then

A(D) is dense in .

Let now v =  2 n un ’ ; since the ma p 03BD ~ v is not in general
n=1 

linear and continuous, we shall need the following lemma.

Lemma VI .1: There exists maximal Radon probabilities n (resp v)

supported on G , , representing un (resp v) so that

(1) A(D) is dense in 

(2 ) 2-n = v
. n=1 

~

Proof: Let v be a simplicial and maximal measure on G representing

v . . The two measures on D, v and  2-n03B4  have the same barycenter
n=1 n

v, hence by [4 ~ , , there exists a measurable M(D) such that


