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Abstract

Four examples are presented which show that stochastic integral processes with
anticipating integrands can have very different sample path behaviour from those with
adapted ones. For example, Skorohod integral processes need not be semimartingales,
but can still have smooth occupation densities. Moreover, even if they are continuous,
and have finite quadratic variation, this may still be essentially bigger than expected
for "smooth" integrands.
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1 Introduction

There has recently been considerable interest in the study of stochastic differential equa-
tions (SDEs) with the Wiener process W as driving noise, but with unusual initial or
boundary data. For example, the initial condition may depend on the whole information
present in W, or one may impose coupled, for example periodic, boundary conditions
on the parameter interval. In these cases it is necessary to use an extension of the Ito

integral, due to Skorohod, which can deal with anticipating integrands. The resulting
integral processes (which we will call Skorohod integral processes) have been used in a
great number of papers to describe solutions of SDEs of the kind indicated. Apart from
existence and uniqueness results the main property of the solutions to have been studied
is the Markov property. Among many other references see Nualart, Pardoux [9], [10], [11],
Ocone, Pardoux [12], [13], Donati-Martin [5], Buckdahn [2], [3], [4], Pardoux, Protter [14].

It is therefore of interest to study the sample path behaviour of Skorohod integral
processes. If the integrand is smooth (in the sense of the Malliavin derivative) then it is well
known that these processes have properties very similar to those of Ito integral processes:
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for example Nualart and Pardoux [9] prove that Skorohod integral processes with smooth
integrands are continuous, and have a quadratic variation equal to the Lebesgue integral
of the squared integrands.

However, up to now, relatively little is known about the sample path properties of
general Skorohod integral processes (see [6]), and this paper arose from the following
question: "Can the sample paths of a general Skorohod integral process behave in an
essentially different way than those of a semimartingale?"

As the easiest way to destroy semimartingale-type behaviour is to find discontinuities of
the second kind, we looked at a surprising example given by Buckdahn [2]. He considered
the simple linear SDE

o =  t  1,

and discovered that the Skorohod integral process Xt - r~ is able to jump. After a little
thought it became clear that this example could to be modified so as to to destroy the
semimartingale property of the corresponding integral process. Indeed it turns out that
playing with r~ in this equation gives a whole variety of Skorohod integral processes with
sample path properties very different from those of their Ito counterparts. In this paper
we present four of them.

Example 1 takes up Buckdahn’s example in [2] and compares the Skorohod solution
with a corresponding Stratonovitch solution and with the solution given by an Ito integral
process with respect to the Wiener filtration enlarged by the information present in Wl.
Though the proofs are straightforward the difference remains rather mysterious at an
intuitive level and all we can do is to ask questions.

In Example 2 we exhibit a random variable r~ which makes the solution X jump so
erratically that the Skorohod integral process X - ?y is not a semimartingale. However, it
still possesses a continuous occupation density. This does not come as a complete surprise,
since sample path irregularity tends to lead to regularity of local times.

Example 3 shows that even worse behaviour is possible, and that a Skorohod integral
process can have unbounded oscillations on every interval, and an analytic occupation
density.

In Example 4 we show that even continuous Skorohod integral processes can have
essentially more "energy" than expected for smooth integrands. By taking r~ to be a
function of Wi varying as quickly as a Brownian path, we show that the quadratic variation
of the corresponding process ~’o is essentially bigger than the expected quantity
fo XJ ds.

2 Notations and preliminaries
Our basic process is the Wiener process W, indexed by the unit interval, on the correspond-
ing canonical Wiener space (Q, F, P). If S denotes the dense subset of L2(~) consisting of
all random variables of the form
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where ti, ..., tn E [0,1], f E we define the Malliavin derivative on S by

DtF = 03A3 . (Wtl, ..., t E [0, 11 °
i=1 ’

D is an unbounded closable operator from Z~(f~) to x [0,1]), and its extension to
the closure D2,1 of S with respect to the norm

I) F ~~z,~=~~ F (Iz + (~ DF ~~z~

is denoted by D as well. The Skorohod integral is the adjoint operator of D. More

precisely, u E X [0,1]) is called Skorohod integrable with integral fa udW, if

F ~ E( utDtFdt)
is continuous with respect to ~2 . Then we have the duality relation

JT(/ utDtFdt) = E( udWF), F E D2,1.

If for all t E [0,1], l[o,t]u is Skorohod integrable, then the Skorohod integral process of u
is given by the family of random variables 10 l[o,t]udW, also denoted by t0usdWs. Note

that this process is unique only up to modifications. So by the statement " fo is

continuous" we mean that this process has a continuous modification.
A sequence of partitions [0,1] by intervals J = [sJ, tJ] is called a 0-sequence,

if it increases with respect to fineness and its mesh converges to 0. For the increment of
a function f over an interval J we write . We use A for Lebesgue measure.

3 The examples
For some p > 2 let ~ E F, P) and consider the stochastic integral equation

Xc = r1 + / , t E [0,1], (1)

where the stochastic integral is taken in the Skorohod sense. Though they are given in a
more general setting in Buckdahn [2], let us briefly review the arguments which identify
the solution of (1).

Proposition 1 For t E [0,1] let

Yt=ex Wt-lt, Zt = W-t11., Xt = YtZt.

If r~ E for some p > 2 then is Skorohod integmble and (1) is satisfied
for any t E [0,1].
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Proof. By the choice of r~, Xt - r~ is square integrable for any t E (o,1]. Hence the duality
of the Skorohod integral and the Malliavin derivative implies that it is sufficient to verify
that

t

E( t0 XsDsFds) = E((Xt - ~)F), t E [0, 1], F E DZ,i. . (

Further as S is dense in D2,1 it is enough to establish (2) for any simple random variable
of the form

F = f (Wt,, ..., ,

where f E Co (Rn), tt, ..., tn E (o,1~, n E N.
The key observation is that for each t E (o,1~ the "partially drifted" process

W-tn. .

is, by Girsanov’s theorem, a Brownian motion under the new probability measure Yt.P . .
Hence we have

F((Xt - = + t n .) - F(W))). .
Now by the choice of f for any c~ E S~, t E (o,1],

(F(W + t n .) - F(W ))(w)
= + t n tl , ..., 03C9tn + t n tn) - , ..., )

n t af

= 03A3 0 + S n t1, + s n 

- / + s n .)ds.

Hence another application of Girsanov’s theorem yields
c

+ t n .) - F(W ))) - E( / + s n .)ds)
0

- / - s n 
0

t

- E( t0 XsDsFds).
This finally implies (2) and we are done.

The most important consequence for what follows is that we have an explicit formula
for the Skorohod integral process of X, given by:

t

Uc = / XsdWs = ~, t E (o,1].

A striking difference between the behaviour of solutions of (1) and that of Ito integral
processes was discovered by Buckdahn (2] in the following simple case.
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Example 1 (Buckdahn [2]): Let r~ = Then

Xt = sgn(Wi - t) Yt , ,

where, as before,
Yt = exp(Wt - t E [0, 1].

Since Y is strictly positive, we encounter the rather surprising fact that X and thus
U not only changes sign when t reaches Wi in the case 0  Wi  1, but that even more

strangely it jumps at that time. This behaviour has no counterpart either for classical
differential equations or for ordinary SDEs. Let us briefly compare the two cases. Suppose
first that is a process of bounded variation such that Vo = 0, and instead of (1)
we consider the stochastic integral equation

Xt = ~ + / 7?=sgn(Vi). (3)

Then there is a canonical choice of integral in (3), a pathwise Riemann- Stieltjes integral,
and the unique solution, given by

Xt = t E (o,1],

is continuous and keeps the sign prescribed by the initial condition r~.
As a second contrast, let us consider various other ways of interpreting the SDE (1)

in the case r~ = sgn(Wl ). Aware of the fact that there is no canonical choice of stochastic
integral, let us this time enlarge the filtration and work with the closest relative of the
Skorohod integral, namely the Ito integral. More precisely, let

Gt = Q(Ws : s  t) V o(Wl),

completed by the P - null sets of F, t E [0,1]. Considering (1) as an Ito SDE with respect
to the new filtration still makes sense: the driving process W is now a semimartingale (see
Jeulin [7], p. 46), and the (pathwise unique) solution is given by

Xt = sgn(W1) Yt

(see Protter [15], p. 77). Once again, the solution keeps the sign prescribed by its initial
value.

We can also use the following alternative argument. Replace r~ in (1) by a deterministic
initial value sgn(x) for x E R and solve the resulting SDE to get the adapted process

t E [0,1]. Now evaluate x at WI to get the Ito solution in the enlarged filtration
described above. The difference between the Skorohod solution of (1) and the Ito solution
in the enlarged filtration is thus just contained in the generalization of the formula of
Proposition 4.12 of Nualart, Pardoux [9]. Apart from this purely formal difference, there
seems to be no intuitively appealing explanation for this strange difference of behaviour.

As a final contrast, let us couple X to the driving noise in (1) differently. Instead of
the Skorohod integral with respect to W let us take the Stratonovitch integral: that is we
consider the integral equation

fY= _ % Xt o t E (o,1], (4)
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where we use the extended Stratonovitch integral in the sense of Nualart, Pardoux [9].
To solve (4), we again may replace r~ in the first step by a deterministic initial value
x E R, to get a solution process = xexp(Wt), t E ~0,1~. In the second step we
use the property for which the Stratonovitch integral is famous, which makes its calculus
"pseudoclassical": given an integrand, say u(., x), sufficiently smoothly parametrized by
z E R, the Stratonovitch integral J u(s, x) o evaluated at some random variable r~, is
the same as J u(s, (see Nualart, Pardoux [9], p. 570). Here we take u(., x) _ 
to be evaluated at r~ = sgn(Wi). Hence (4) has the solution

Xt = sgn(W1) 

t E [0,1], which, just as the two versions before, keeps the sign prescribed by r~.

For other choices of 7/, the jump in the preceding example can be replaced by even
more serious consequences, as will be shown now.

Example 2: In this example, we will show that r~ in Proposition 1 can be chosen such that
the corresponding Skorohod integral process is not a semimartingale, but still possesses a
continuous occupation density.

Let A be a Cantor set in [0,1] which is totally disconnected and has positive Lebesgue
measure. We set

B= U(A+n): :
nEZ

note that A((x - B) n [0,1]) = A(A) for all x E R. Let

I

clearly ~ E Lp(SI, F, P) for any p > 1. It is easy to see that the corresponding solution X
of (I) and thus

U. = .0 XsdWs = X. - ~

is not a semimartingale in any filtration. Indeed, choose an arbitrary 03C9 E Q. Then

c = inf Yt(w) > 0.
tE[o,11

Now has oscillatory discontinuities of size 2 at every point in the uncountable set

(03C91 - B) n [0, 1],

which, by the choice of A, has positive Lebesgue measure. Consequently, has jumps
of size > 2c on this set. So X is not cadlag, and further no modification of X is cadlag: it
follows that no modification of X is a semimartingale.

Let us now examine the occupation density of the process X. The behaviour of the
Skorohod integral process may be described by "wildly jumping between two branches of
semimartingale type behaviour". The semimartingale branches, the processes Y and - Y ,
each have quadratic variation equivalent to Lebesgue measure on the unit interval, so it is
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reasonable to measure occupation time by Lebesgue measure. Hence, for 03C9 E St, F E B(R)
let

(F,03C9) = 10 1F(Xs(03C9))ds.

The two branches do not interfere, since in one of them X is positive, and in the other
one negative. We may therefore define separate occupation times

1(F,03C9) = 10 1F~]0,~[(Xs(03C9))ds
= (03C91-B)~[0,1]1F~]0,~[(Ts(03C9))ds,

2(F,03C9) = 101F~]-~,0[(Xs(03C9))ds

= (03C91-Bc)~[0,1]1F~]-~0[(-Ys(03C9))ds,
where F E B(R). Then obviously

 = 1 + 2.

Moreover, since Y is a semimartingale with quadratic variation equivalent with respect
to Lebesgue measure, 1 and 2 are absolutely continuous with respect to A. Hence so is
p and we have established that X possesses an occupation density which, in addition, is
continuous. Since U = X - r~, so does U.

For the the remaining two examples it will be helpful to use an independent auxiliary
Gaussian process. So let (~, G, Q) be another probability space, carrying a Gaussian
process (Bt, t E R) satisfying = 0, and with covariance function

E(BsBt) = o(s, t), where o(t, t)  h’(1V ( t ~)

for some I(  oo.

For each 03BE ~ 0396 let = B03C91 (03BE), and consider the SDE (1) in the probability space
(~2, F, P). We indicate expectation with respect to P, Q, by Ep, EQ respectively. We
must first check that ~03BE satisfies the integrability condition of Proposition 1: however

EQEP exp(~03BE) = EP(EQ(exp(B03C91))
= EP(exp(1 203C3(W1, W1))
 Wi ~)))  oo.

Thus if ~~ : Ep  oo) then = 1, and for each ~ E we may apply
Proposition 1 to deduce that the solution to (1) is

Example 3. Let o(s, t) = g(t - s), where g satisfies, for some {) > 0,

7(0) - g(t) ~ (log I t for t 1 6. (5)
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Then Berman, [I], p. 298, proves that B has sample paths of unbounded variation on every
interval, and also has an analytic local time. As Y is continuous and strictly positive, the
paths of X have similar properties to those of B, and are unbounded on every interval.

We now show that in addition X has (P x Q a.s.) an analytic local time. Fix w E 0,
and consider the process X,(w, .) under the law Q: this is a mean zero Gaussian process
with covariance given by

= ~)~Yt(w~ ~)
= = S)~

Berman’s proof extends easily to non-stationary Gaussian processes, and shows that such
a process has analytic local time provided its covariance function T(s, t) satisfies

T(t, t) - 2T(S, t) + T(S, S) ~ c(log ( t - S ( 1 (6)

for some c > 0. However we have

s) + 
> 9(t - s)) + (Yt - 
> 9(t - s))
> 2YtYs(log It - s |-1)-1.

As Y is strictly positive, it follows from (5) that oW satisfies (6) for w fixed, and therefore
by a Fubini type argument that X (and so U) has an analytic local time.

One might be tempted to attribute the strange behaviour of U in Examples 2 and 3
to the fact that it is able to jump. This is wrong. We will now exhibit another family of
Skorohod integral processes which are continuous, but which fail to have other properties
expected by a well-behaved Ito integral process. It is shown in Nualart, Pardoux [9], p.
558, that if u is "smooth enough", .0 usdWs has a quadratic variation which is given by
~o uJds. In our next example, the quadratic variation of the integral processes is essentially
bigger.

Example 4. We continue with the notation set out above, but now take

t) =1 s t ~ if sgn(s) = sgn(t)
= 0 otherwise.

Thus (Bt)tO and are independent Wiener processes. As before we take =

BWl (~), so if
= 

then for £ E the process X, (., ~) is a solution of ( 1 ).
We wish to study the quadratic variation of X for fixed ~: to do so we will first study the

process Xt(., .) on the product space (0 x E, F x G, P x Q). (We extend random variables
defined on the spaces (fi,F,P) and (~, G, Q ) to the product space in the obvious way).
For simplicity, we will work on the whole unit interval and only remark that this could be
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done on any interval in [0,1]. It will be helpful to change the multiplicative decomposition
of X in order to be able to argue by independence. For t > 0 let

exp(Wt - tWl),
Yt’ = exp(t(Wl - Z)),
Z’t = Y"tB03C91-t.

Then
X = Y’Z’

and, moreover, (as (Wt - tWi, t E [0~ 1]) is a Brownian bridge independent of Wi), Y’ and
Z’ are independent.

Now let (Jn)neN be any 0-sequence of partitions of [0,1]. For n E N we have

~ (JX)2 = ~ -E- ~ 
JeJn JeJn JeJn

+2 ~ (7)
JeJn

Let us investigate the limits of the sequences on the right hand side of (7) separately. Since
Wi and B are independent, the quadratic variation of the process Z’ is given by J~ Yt"2dt.
Hence, using that Y’ is in addition independent of Z’, we get

1 1

~ = (8)
JeJ" 

10 0

in x E,F x G, P X Q). Next, observe that Y’ is a semimartingale with quadratic
variation

10 Y’2tdt.

A similar argument as for the first term now yields that for the second one we get
1 1

~ = (9)
J6Jn -"’ ~

Again independence of Y’ and Z’, as well as the fact that Z’ is continuous and Y’ is
a semimartingale forces the last term on the right hand side of (7) to converge to 0 in

X E,F X G,P X Q) as n -~ oo. Hence, (8) and (9) give
1

03A3 (0394JX)2 ~ (X2t + Y2t)dt
JeJn 

’°

in x x G, P x Q) for any 0-sequence of partitions of [0,1]. Thus

i

03A3 (0394JU)2 ~  (X2t + Y2t)dt
J6Jn 0
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as n -; oo in x X G, P x Q). In particular, we may fix ( on a set of Q
measure 1, and find a subsequence (Kn)nEN of such that

~ (~~~)2(~! ~) -’ (Xi (~~ ~) + Yt2)dt (10)
J~Kn

in L2(S~, F, P). So even though X is continuous the limit in (10) is not equal to the quantity
one obtains for Skorohod integral processes with smooth integrands (cf. Nualart, Pardoux
~9~, p. 558), namely

10 X2t(.,03B6)dt.

Remarks. 1. It is clear that many other examples of this kind are possible. In particular,
by choosing a suitable stationary Gaussian process Bt with a covariance function t) _
g(t - ,s), with (g(0) - g(t)) ~| t |p as | t | ~ 0 for some 0  p  1, we obtain a continuous
Skorohod integral process X with infinite quadratic variation but with finite q’1- th order
variation for each q > p. (See [8]).
2. It is not possible to obtain from Proposition 1 examples of Skorohod integral processes
violating the local property:

ut = 0 Ax P-a.e. on [0,1] x A implies / yi utdWt = 0 on A, (ii)

and indeed Nualart and Pardoux [9] conjecture that (11) holds in general. However, we
can find processes which violate the local property in the following weaker sense. Take

’~ T = 0 V (Wi A 1), A = {0  Wl  1}. .

Then T is a nontrivial random time, but not a stopping time, A a nontrivial subset of ~
and we have

ut = Xc = 0

on the set ~0, T(x A, whereas

T
XT = / usdWs = YT > 0

on this set. Hence the integral of the process u jumps to a nonzero value at T, even though
~c vanishes before T. 
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