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with Applications to Non-Linear Filtering
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abstract

This paper focuses on interacting particle systems methods for solving numerically a
class of Feynman-Kac formulae arising in the study of certain parabolic differential
equations, physics, biology, evolutionary computing, nonlinear filtering and elsewhere.
We have tried to give an "expose" of the mathematical theory that is useful for analy-
zing the convergence of such genetic-type and particle approximating models including
law of large numbers, large deviations principles, fluctuations and empirical process
theory as well as semigroup techniques and limit theorems for processes.
In addition, we investigate the delicate and probably the most important problem of
the long time behavior of such interacting measure valued processes.
We will show how to link this problem with the asymptotic stability of the corres-
ponding limiting process in order to derive useful uniform convergence results with
respect to the time parameter.
Several variations including branching particle models with random population size
will also be presented. In the last part of this work we apply these results to continuous
time and discrete time filtering problems.
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1 Introduction

1.1 Background and Motivations
The aim of this set of notes is the design of a branching and interacting particle sys-
tem (abbreviate BIPS) approach for the numerical solving of a class of Feynman-Kac
formulae which arise in the study of certain parabolic differential equations, physics,
biology, evolutionary computing, economic modelling and nonlinear filtering problems.

Our major motivation is from advanced signal processing and particularly from
optimal nonlinear filtering problems. Recall that this consists in computing the con-
ditional distribution of a partially observed Markov process.

In discrete time and in a rather general setting the classical nonlinear filtering
problem can be summarized as to find distributions of the form

~f ~ Bb(E), ~n ~ 0, ~n(f) = 03B3n(f) 03B3n(1) (1)

where Bb(E) is the space of real bounded measurable functions over a Polish state
space E and ~n( f ) is a Feynman-Kac formula given by

/ ~ B

03B3n(f) = E(f(Xn) 03A0 gm(Xm-1) ) (2)

where {Xn ; n > 0} is a given time inhomogeneous Markov chain taking values in E
and {gm ; m > 1} is a given sequence of bounded positive functions.

In continuous time, the computation of the optimal pathwise filter can be sum-
marized as to find the flow of distributions

~ f ~ Bb(E), ~t ~ R+, ~t(f) = 03B3t(f) 03B3t(1) (3)

where 03B3t(f) is again defined through a Feynman-Kac formula of the following form

03B3t(f) = E( f(Xt) exp (t0Us(Xs)ds)) (4)

This time {Xt ; t ~ R+} denotes an E-valued cadlag inhomogeneous Markov process
and {Ut ; t E 1~+} is a measurable collection of locally bounded (in time) and mea-
surable nonnegative functions.

Even if equations (1) and (3) look innocent they can rarely be solved analytically
and their solving require extensive calculations. More precisely, with the notable
exception of the so-called "linear-Gaussian" situation (Kalman-Bucy’s filter [15]) or
wider classes of models (Benes’ filters [12]) optimal filters have no finitely recursive
solution [20]. To obtain a computationally feasible solution some kind of approxima-
tion is needed.
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Of course, there are many filtering algorithms that have been developed in mathema-
tics and signal processing community. Until recently most works in this direction were
based on fixed grid approximations, conventional linearization (Extended Kalman Fil-
ters) or determining the best linear filter (in least squares sense). These various nu-
merical methods have never really cope with large scale systems or unstable processes.
Comparisons and examples when the extended Kalman-Bucy filter fails can be found
for instance in [15]. In addition all these deterministic schemes have to be handled

very carefully mainly because they are usually based on specific criteria and rates of
convergence are not always available.

The particle algorithms discussed in these lectures belong to the class of Monte
Carlo methods and they do not use regularity informations on the coefficients of the
models. Thus, large scale systems and nonlinear models with non sufficiently smooth
coefficients represent classes of nonlinear filtering problems to which particle methods

might be applied. These methods are in general robust and very efficient and many
convergence results are available including uniform convergence results with respect to
the time parameter. But, from a strict practical point of view, if there exists already
a good specialized method for a specific filtering problem then the BIPS approach
may not be the best tool for that application..

Let us briefly survey some distinct approaches and motivate our work.

In view of the functional representations (1) and (3) the temptation is also to
apply classical Monte-Carlo simulations based on a sequence of independent copies of
the process X. Unfortunately it is well known that the resulting particle scheme is
not efficient mainly because the deviation of the particles may be too large and the

growth of the exponential weights with respect to the time parameter is difficult to
control (see for instance [28, 34, 57]).
In [34] we propose a way to regularize these weights and we give a natural ergodic
assumption on the signal semigroup under which the resulting Monte-Carlo particle
scheme converges in law to the optimal filter uniformly with respect to the time pa-
rameter.

In more general situations, complications occur mainly because this particle scheme
is simply based on a sequence of independent copies of the signal. This is not surpris-
ing : roughly speaking the law of signal and the desired conditional distribution may
differ considerably and they may be too few particles in the space regions with high
probability mass.

Among the most exciting developments in nonlinear filtering theory are those

centering around the recently established connections with branching and interacting
particle systems. The evolution of this rapidly developing area of research may be seen

quite directly through the following chains of papers [23, 21] [25, 24], [30, 33, 31] [35,
37, 36], [42], [41, 40], [45], [32, 47] as well as [11,18, 46, 73, 64] and finally [59, 85, 84].

Instead of hand crafting algorithms, often based on the basis of had-hoc criteria,
particle systems approaches provide powerful tools for solving a large class of non-
linear filtering problems. In contrast to the first Monte-Carlo scheme the branching
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and interacting particle approximating models involve the use of a system of particles
which evolve in correlation with each other and give birth to a number of offsprings
depending on the observation process. This guarantees an occupation of the probabil-
ity space regions proportional to their probability mass thus providing a well behaved
adaptative and stochastic grid approximating model. Furthermore these particle al-
gorithms also belong to the class of resampling methods and they have been made
valuable in practice by advances in computer technology [52]. Different adaptative
locally refined but deterministic multi-grid methods can be found in [17]. In contrast
to BIPS approaches the latter are limited to low dimensional state space examples.

It is hard to know where to start in describing contributions to BIPS approxima-
tions of Feynman-Kac formulae.

In discrete time and nonlinear filtering settings the more embryonic form of inter-
acting particle scheme appeared in the independent works [32, 47], [64] and [73]. The
first proof of convergence of these heuristics seems to be [30, 31]. The analysis of the
convergence has been further developed in [33, 35, 37, 36, 42].

In continuous time settings the origins of interacting particle schemes is a more
delicate problem. The first studies in continuous time settings seem to be [23] and [21].
These works were developed independently of the first set of referenced papers. The
authors present a branching particle approximating model without any rates of conver-
gence and the main difference with previous interacting particle schemes comes from
the fact that the number of particle is not fixed but random. Moreover the authors
made the crucial assumptions that we can exactly simulate random transitions accord-
ing to the semigroup of the continuous time signal and stochastic integrals arising in
Girsanov exponentials are exactly known. Therefore these particle algorithms do not
applied directly to the continuous time case. On the other hand these branching parti-
cle models are based on a time discretization procedure. As a result the corresponding
nonlinear filtering problem can be reduced to a suitably defined discrete time filtering
problem. The corresponding discrete time version of such branching and interacting
particle schemes as well as the first convergence rates are described in [25] and [24].

The studies [41] and [40, 39] discuss several new interacting particle schemes for
solving nonlinear filtering problems where the signal is continuous but the number
of observations is finite. To get some feasible solution which can be used in prac-
tice several additional levels of approximations including time discretizations are also
analyzed. In contrast to previous referenced papers these schemes can also be used
for solving numerically filtering problems with correlated signal and observation noise
sources.

As we shall see in the further development of section 1.2 the interacting or branch-
ing particle schemes based on an additional time discretization procedure are not
really efficient for solving continuous time filtering problems. The authors presented
in [45] a genuine continuous time genetic type particle scheme for solving the robust
optimal filter. This scheme will be discussed in section 1.3 and section 3.
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The connections between this IPS model, the classical Moran IPS and the Nanbu
IPS (arising respectively in the literature of genetic algorithms and Boltzmann equa-
tions) are discussed in section 1.3.

The modelling and the analysis of such particle approximating models has ma-
tured over the past ten years in ways which make it much more complete and rather
beautiful to learn and to use. One objective of these notes is to introduce the reader to
branching and interacting particle interpretations of Feynman-Kac formulae of type
(1)-(4).
We have also tried to give an "expose" of the mathematical theory that it is useful in
analyzing the convergence of such approximating models including law of large num-
bers, large deviations, fluctuations and empirical process theory, as well as semigroup
techniques and functional limit theorems for stochastic processes.

Although only a selection of existing results is presented, many results appear here
for the first time and several points have been improved. The proofs of existing results
are only sketched but the methodologies are described carefully. Deeper informations
are available in the list of referenced papers.

The material for this paper has also been chosen in order to give some feel of the
variety of the theory but the development is guided by the classical interplay between
theory and detailed consideration of application to specific nonlinear filtering models.

This set of notes is very far from being exhaustive and only surveys results that are
closely related to BIPS-approximations of Feynman-Kac formulae and non linear fil-
tering problems. Among the topics omitted are those centering around evolutionary
computing and numerical function optimization problems. Among the huge litera-
ture on evolutionary computing and genetic algorithms we refer to [6, 7, 14], [19],
[44], [60, 61, 62], [63] and [111].
We emphasize that the so-called simple genetic algorithm is a special case of the BIPS
models presented in this work.
In this connection, the measure valued distribution flows ( 1 )-(4) and the correspond-
ing interacting particle approximating models can be regarded as the so-called infinite
and finite population models. Therefore the methodologies presented in this work can
be used for establishing the most diverse limit theorems on the long time behavior of
these models as well as the asymptotics of the finite population model as the number
of individuals tends to infinity.

An overview of the material presented in these notes was presented in a three one
hour lectures for the Symposium/Workshop on Numerical Stochastics (April 1999) at
the Fields Institute for Research in Mathematical Sciences (Toronto). At the same

period they were presented at the University of Alberta Edmonton with the support of
the Canadian Mathematics of Information Technology and Complex Systems project
(MITACS).
We would like to thank Professor M. Kouritzin from the University of Alberta for

stimulating discussions.
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A part of this material presented in this set of notes results from collaborations of
one of the authors with D. Crisan and T. Lyons [25, 24], with A. Guionnet [35, 37, 36],
with J. Jacod [40] and Ph. Protter [41], and with M. Ledoux [42].

We also heartily thank Gerard Ben Arous, Carl Graham and Sylvie Meleard for
encouraging and fruitful discussions and Michel Ledoux for inviting us to write these
notes for Le Seminaire de Probabilités.

We gratefully acknowledge CNRS research fellowship No 97N23/0019 "Modeli-
sation et simulation numérique", European community for the CEC Contracts No
ERB-FMRX-CT96-0075 and INTAS-RFBR No 95-0091 and the Canadian Network

MITACS-Prediction In Interacting Systems.

1.2 Motivating Examples
The interacting particle interpretation of the Feynman-Kac models (1)-(4) has had
numerous applications in many nonlinear filtering problems; to name a few, radar
signal processing ([46, 47]), global positioning system ([18]) and tracking problems
([73, 85, 84, 64]). Other numerical experiments are also given in [21] and [41].

The purpose of these notes is to expose not only the theory of interacting particle
approximations of Feynman-Kac formulae but also to provide a firm basis for the
understanding and solving nonlinear filtering problems. To guide the reader and mo-
tivate this study we present here two generic models and the discrete and continuous
time Feynman-Kac formulations of the corresponding optimal filter.

The distinction between continuous and discrete time will lead to different kind
of interacting particle approximating models. Intuitively speaking continuous time
models correspond to processes of classical physics while discrete time models arise in
a rather natural way as soon as computers are part of the process. More general and
detailed models will be discussed in the further development of section 4.

In discrete time settings the state signal X = (Xn. ; ; n > 0} is an Rp-valued
Markov chain usually defined through a recursion of the form

where W = {Wn ; n > 1 ~ is a noise sequence of independent and Revalued random
variables. For each n > 1 the function Fn x JRP is measurable and the initial
value Xo is independent of W. The above recursion contains the laws of evolution for
system states such as the laws of evolution of a target in tracking problems, an aircraft
in radar processing or inertial navigation errors in GPS signal processing. The noise
component W models the statistics of unknown control laws of an aircraft or a cruise
control in an automobile or a non cooperative target as well as uncertainties in the
choice of the stochastic mathematical model.

For future reference it is convenient to generalize the definition of the state signal
X. . More precisely an alternative way to define X consists in embedding the latter
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random dynamical system through its transition probabilities. This approach gives
some insights into ways of thinking the evolution of the marginal laws of X and it
also allows to consider signals taking values on infinite dimensional spaces. For these
reasons we will systematically assume that the sequence X = {Xn ; n > 0~ is a
Markov process taking values in a Polish state space E with transition probabilities
{Kn ; n > 1} and initial distribution y/o- As we shall see in the further development
this formulation also allows a uniform treatment of filtering problems with continuous
time signals and discrete time observations. The signal X is not known but partially
observed. Usually we assume that the observation process Y = > 1 ~ is a

sequence of Revalued random variables given by

Yn = + ~n

where V = ~Vn ; n > 1} are independent and l~r valued random variables whose
marginal distributions possess a density with respect to Lebesgue measure on
I~r and for each n > 1, hn : E ~ l~r is a measurable function.
Here again the design of the disturbance sequence V depends on the class of sensors
at hand. For instance noise sources acting on sensors model thermic noise resulting
from electronic devices or atmospheric propagation delays and/or received clock bias
in GPS signal processing. For more details we refer the reader to the set of referenced
articles.

Given the stochastic nature of the pair signal/observation process and given the
observation values Yn = yn, for each n > 1, the nonlinear filtering problem consists in
computing recursively in time the one step predictor conditional probabilities qn and
the filter conditional distributions Tin given for any bounded Borel test function f by

- = yla...,Yn = yn)
= E(/(X.)!~=~...~ = yn+1 )

As usually the n-step filter Tin is written in terms of ~n as

n(f) = Ef(x)03C6n+1(yn+1 = hn+1(x)) ~n(dx) E 03C6n+1(yn+1 - hn+1(x)) ~n(dx )

and the n-step predictor may be defined in terms of the Feynman-Kac type formula

~n(f) = 03B3n(f) 03B3n(1)
with 

03B3n(f) = E (f(Xn)03A003C6m(ym - hm(xm-1)))
We will return to this model with more detailed examples in section 5.



9

The second filtering model presented hereafter is a continuous time (signal/obser-
vation) Markov process ~(St, Y) ; t E taking values in IRP x It is solution of
the Ito’s stochastic differential equation

dst = A(t, St ) dt + B(t, St ) dWt + ~m C(t, St_, u) du) - v(dt, du))
dYt = h(St)dt + 03C3dVt

(V, W ) is an (q + r) dimensional standard Wiener process and  is a Poisson random
measure on R+ with intensity measure v(dt, du) = dt ® F(du) and F is a positive
a-finite measure on The mappings A : R+ x R+ x I~p @ l~r,
C : R+ x RP x RP, and h : : R~ are Borel functions, So is a random
variables independent of (V, W, and Yo = 0.
Here again the first equation represents the evolution laws of the physical signal
process at hand. For instance the Poisson random measure  may represent jumps
variations of a moving and non cooperative target (see for instance [47]).

Next we examine three situations. In the first one we assume that observations
are given only at regularly spaced times to, tl, ... , tn, ... E R+ (to = 0, Yo = 0) and we
are interested in the conditional distributions given for any bounded Borel function
f : : RP - R by

n(f) = E(f(Stn) |Yt1 = y1,...,Ytn = yn)
where y1, ... , yn E l~q is a given sequence of observations.
If we denote E = D ([0, the Polish space of cadlag paths from [0, ti into l~p
then the discrete time sequence

’ 

~ > O ~,~ def . [ 0 Btn

(where stands for the usual family of time shifts), is an E-valued Markov chain.
On the other hand if H : E - R~ is the mapping defined by

~x ~ E , H(x) = t10 h(xs) ds

then using the above notations for any n ~ 1: 

Yn Y;n-1 = H(Xn-1 Vtn-1)
This description is interesting in that it shows that the latter filtering problem is
equivalent to the previous discrete time model. In this connection it is also worth

noting that for any bounded Borel test function f : E -~ R

- - yl’ ~ . ,’ Ytn - - yn) - - 

with
/ n B

03B3n(f) = E( f(Xn)03A003C6m(ym - ym-1 - H(Xm-1)))

where, for any m ~ 1, 03C6m is the density of the Gaussian variable 03C3(Vtm - Vtm-1). This
observation also explain why it is necessary to undertake a study of Feynman-Kac
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formula of type (1) with Polish valued Markov processes X.

A more traditional question in continuous time nonlinear filtering settings is to
compute the conditional distributions {1rt ; t E given for any bounded Borel
functions f : R by setting

_ (5)

where is the filtration generated by the observations up to time t. Roughly
speaking this continuous time problem is close to the previous discrete time model
when the time step At = tn - tn-i is sufficiently small and when observations are
delivered continuously in time. For instance in radar processing the measurements
derived from the return signal of a moving target can be regarded as a pulse train of
rectangular or Gaussian pulses with period 10-4 seconds.
In real applications one usually consider the discrete time signal model

{Stn ; n > 0}

as Revalued Markov chain and one replaces the continuous time observation process
by the discrete time sequence

At + (6)

This first level of approximation is commonly used in practice and the error caused
by the discretization of the time interval is well understood (see for instance [76] and
references therein as well as section 4.3 in these notes).
One consequence of the previous discretizarion is that the filtering problem is now
reduced to find a way of computing the conditional distributions given for any bounded
Borel function f : l~p -~ R by

... ~$’~/
with yo = 0 and

/ . B

03B30394n = E(f(Stn) 03C6m(ym - ym-1 - h(Stm-1)0394t))

One drawback of this formulation is that the corresponding IPS approximating model
is not really efficient. As we shall see in the further development of section 1.3 and
section 4.3 the evolution of this scheme is decomposed into two genetic type selec-
tion/mutation transitions. During each selection stage the system of particles takes
advantage of the current observation data in order to produce an adaptative grid.
The underlying nth step selection transition is related to the fitness functions gn de-
fined by

- - 

but the physical noise in sensors as well as the choice of the short time step At
critically corrupt the information delivered between two dates (recall that the current
observation at time n has the form (6)). One consequence is that the resulting particle
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scheme combined with the previous time discretization converges slowly to the desired
conditional distributions (5) (see for instance section 4.3 and [24] as well as [23, 21]
for a branching particle alternative scheme).
One way to improve these rates is to use a genuine continuous time and interacting
particle approximating model. In this alternative approach the information used at
each selection date is not the "increments" of the observation process but the current
observation value at that time. 

,

The key idea presented in [45] and further developed in this work is to study the
robust and pathwise filter defined for any y E C(R+, (and not only on a set of
probability measure 1) and for any bounded Borel function f : by a formula
of the form

03C0 y,t(f) 
= 

Rp f(x)eh*(x)yt ~y,t(dx) Eeh*(x)yt ~y,t(dx) 
with ~y,t(f) = 03B3y,t(f) 03B3y,t(1)

and is again defined through a Feynman-Kac type formula

03B3y,t(f) = E(f(Xyt) exp t0 Vs(Xys,ys) ds)
For any s ~ R+, Vs : Rp  Rq ~ R+ is a Borel measurable function which depends
on the coefficients of the filtering problem at hand and E is a Markov

process which depends on the observations. To describe precisely these mathematical
models we need to introduce several additional notations. We will return to this model
with detailed examples of signal processes which can be handled in our framework in
section 4.2.

The convergence results for the resulting interacting particle approximating model
will improve the one presented in section 4.3 and in the articles [23, 21, 24]. From a
practitioner’s view point the main difference between these two approaches lies in the
fact that in the former the selection and interaction mechanism only depends on the
current observation yt and on the fitness function yt). Moreover under
natural stability assumptions the resulting IPS scheme converges uniformly in time
to the desired optimal filter.

1.3 Description of the Models
To provide a red line in this work and to point out the connections with classical
mean-field interacting particle system theory, the models are focused around two ap-
proximating interacting particle systems (abbreviate IPS): The research literature
abounds with variation of these two IPS models. The interested reader will also find
a detailed description of several variants including branching schemes with random
population size, periodic selection schemes and conditional mutations.

Most of the terminology we have used is drawn from mean field IPS and measure
valued processes theory. We shall see that the flows of distributions (1) and (3) are


