A teacher’s note on no-arbitrage criteria

Séminaire de probabilités (Strasbourg), tome 35 (2001), p. 149-152

<http://www.numdam.org/item?id=SPS_2001__35__149_0>
A teachers’ note on no-arbitrage criteria

Yuri Kabanov and Christophe Stricker
UMR 6623, Laboratoire de Mathématiques,
Université de Franche-Comté
16 Route de Gray, F-25030 Besancon Cedex, FRANCE

Abstract

We give a new proof of the classical Dalang-Morton-Willinger theorem.

Key words: no-arbitrage criteria, martingale measure, Kreps-Yan theorem

Mathematics Subject Classification 2000: 60G42

1. Introduction. The Dalang-Morton-Willinger theorem asserts, for a discrete-time model of security market, that there is no arbitrage if and only if the price process is a martingale with respect to an equivalent probability measure. This remarkable result sometimes is referred to as the First Fundamental Theorem of mathematical finance, [9]. A simple statement suggests a simple proof and many attempts were made to find such one, cf. [1], [10], [8], [6], [7], [4], [2]. Various aspects were investigated in details and the theorem was augmented by additional equivalent conditions revealing its profound difference from the Harrison-Pliska theorem [3] which is the same criterion but for the model with finite Ω. Unfortunately, all existing proofs are too cumbersome for lecture courses. This note is a new attempt to provide a concise proof which uses only results from the standard syllabus.

2. No-arbitrage criteria. Let (Ω, F, P) be a probability space equipped with a finite discrete-time filtration (Ft), t = 0, ..., T, FT = F, and let S = (St) be an adapted d-dimensional process. Let RT := {ξ : ξ = H · ST, H ∈ P} where P is the set of all predictable d-dimensional processes (i.e. Ht is Ft-1-measurable) and

\[H \cdot S_T := \sum_{t=1}^{T} H_t \Delta S_t, \quad \Delta S_t := S_t - S_{t-1}. \]

Put AT := RT − L+; \(\bar{A}_T \) is the closure of AT in probability, \(L^+_T \) is the set of non-negative random variables.

Theorem 1 The following conditions are equivalent:

(a) \(A_T \cap L^+_T = \{0\} \);
(b) \(A_T \cap L^+_T = \{0\} \) and \(A_T = \bar{A}_T \);
(c) \(\bar{A}_T \cap L^+_T = \{0\} \);
(d) there is a probability \(\tilde{P} \sim P \) with \(d\tilde{P}/dP \in L^\infty \) such that S is a \(\tilde{P} \)-martingale.
In the context of mathematical finance this model corresponds to the case where the "numéraire" is a traded security, S describes the evolution of prices of risky assets, and $H \cdot S_T$ is the terminal value of a self-financing portfolio. Condition (a) is interpreted as the absence of arbitrage; it can be written in the obviously equivalent form $R_T \cap L^0 = \{0\}$ (or $H \cdot S_T \geq 0 \Rightarrow H \cdot S_T = 0$). We include in the formulation only the basic equivalences: various other ones known in the literature can easily be deduced from the listed above.

If Ω is finite then A_T is closed being a polyhedral cone in a finite-dimensional space. For infinite Ω the set A_1 may be not closed, see an example in [8], while R_T is always closed (this can be checked in a similar way as the implication $(a) \Rightarrow (b)$ in the proof below).

3. Auxiliary results. The following observation is elementary.

Lemma 2 Let $\eta^n \in L^0(\mathbb{R}^d)$ be such that $\eta := \liminf n \to \infty$. Then there are $\tilde{\eta}^k \in L^0(\mathbb{R}^d)$ such that for all ω the sequence of $\tilde{\eta}^k(\omega)$ is a convergent subsequence of the sequence of $\eta^n(\omega)$.

Proof. Let $\tau_0 := 0$. Define the random variables $\tau_k := \inf\{n > \tau_{k-1} : |\eta^n| - \eta| \leq k^{-1}\}$. Then $\tilde{\eta}_0 := \eta^{-k}$ is in $L^0(\mathbb{R}^d)$ and $\sup_k |\tilde{\eta}_0^k| < \infty$. Working further with the sequence of $\tilde{\eta}_0^k$ we construct, applying the above procedure to the first component, a sequence of $\tilde{\eta}_1^k$ with convergent first component and such that for all ω the sequence of $\tilde{\eta}_1^k(\omega)$ is a subsequence of the sequence of $\tilde{\eta}_0^k(\omega)$. Passing on each step to the newly created sequence of random variables and to the next component we arrive to a sequence with the desired properties. \hfill \Box

Remark. The above claim can be formulated as follows: there exists an increasing sequence of integer-valued random variables σ_k such that η^{σ_k} converges a.s.

For the sake of completeness, we recall the proof of the well-known result due to Kreps and Yan, [5], [11].

Lemma 3 Let $K \supseteq -L^1_+$ be a closed convex cone in L^1 such that $K \cap L^1 = \{0\}$. Then there is a probability $P \sim P$ with $d\tilde{P}/dP \in L^\infty$ such that $E\tilde{\xi} \leq 0$ for all $\xi \in K$.

Proof. By the Hahn–Banach theorem for any $x \in L^1_+$, $x \neq 0$, there is $z_x \in L^\infty$ such that $Ez_x \xi < Ez_x x$ for all $\xi \in K$. It follows, since K is a cone, that $Ez_x \xi \leq 0$ for all $\xi \in K$. Since K contains all negative random variables, $z_x \geq 0$ and $Ez_x x > 0$.

Normalizing, we assume that $z_x \leq 1$. The Halmos–Savage theorem asserts that the family of measures $\{z_x P\}$ contains a countable equivalent subfamily $\{z_{x_i} P, \ x_i \in \mathbb{N}\}$ (i.e., both vanish on the same sets). Put $\rho := \sum 2^{-i}z_{x_i}$ and $\tilde{x} := I_{\{\rho=0\}}$. Then $Ez_{x_i} \tilde{x} = 0$ for all i and, hence, $Ez_{x_i} \tilde{x} = 0$ for all $x \in L^1_+$. Thus, $\tilde{x} = 0$ (otherwise we would have $Ez_{x_i} \tilde{x} > 0$) and the measure $\tilde{P} := c\rho P$ with $c = 1/E\rho$ meets the requirements. \hfill \Box

Remark. The Halmos–Savage theorem is simple and the reference can be replaced by its proof which is as follows. Consider the larger family $\{y P\}$ where y are convex combinations of z_x. Then $\esssup_i I_{\{y > 0\}}$ can be attained on an increasing sequence of $I_{\{y_k > 0\}}$. Clearly, $\{y_k P\}$ is a countable equivalent subfamily of $\{y P\}$ and it is a convex envelope of a countable family $\{z_{x_i} P\}$ we are looking for.

4. Proof of Theorem 1. $(a) \Rightarrow (b)$ To show that A_T is closed we proceed by induction. Let $T = 1$. Suppose that $H^n_1 \Delta S_1 - r^n \to \xi$ a.s. where H^n_1 is \mathcal{F}_0-measurable.
and \(r^n \in L_+^0 \). It is sufficient to find \(\mathcal{F}_0 \)-measurable random variables \(\tilde{H}_1^k \) which are convergent a.s. and \(\tilde{r}^k \in L_+^0 \) such that \(\tilde{H}_1^k \Delta S_1 - \tilde{r}^k \rightarrow \zeta \) a.s. convergent.

Let \(\Omega_1 \in \mathcal{F}_0 \) form a finite partition of \(\Omega \). Obviously, we may argue on each \(\Omega_i \) separately as on an autonomous measure space (considering the restrictions of random variables and traces of \(\sigma \)-algebras).

Let \(H_1 := \lim \inf |H_1^n| \). On the set \(\Omega_1 := \{ H_1 < \infty \} \) we can take, using Lemma 2, \(\mathcal{F}_0 \)-measurable \(\tilde{H}_1^k \) such that \(\tilde{H}_1^k(\omega) \) is a convergent subsequence of \(H_1^n(\omega) \) for every \(\omega \); \(\tilde{r}^k \) are defined correspondingly. Thus, if \(\Omega_1 \) is of full measure, the goal is achieved.

On \(\Omega_2 := \{ H_1 = \infty \} \) we put \(G_1^n := H_1^n / |H_1^n| \) and \(h^n_1 := r^n_1 / |H_1^n| \) and observe that \(G_1^n \Delta S_1 - h^n_1 \rightarrow 0 \) a.s. By Lemma 2 we find \(\mathcal{F}_0 \)-measurable \(\tilde{G}_1^k \) such that \(\tilde{G}_1^k(\omega) \) is a convergent subsequence of \(G_1^n(\omega) \) for every \(\omega \). Denoting the limit by \(\tilde{G}_1 \), we obtain that \(\tilde{G}_1 \Delta S_1 = h_1 \) where \(h_1 \) is non-negative, hence, in virtue of (a), \(\tilde{G}_1 \Delta S_1 = 0 \).

As \(\tilde{G}_1(\omega) \neq 0 \), there exists a partition of \(\Omega_2 \) into \(d \) disjoint subsets \(\Omega_2 \in \mathcal{F}_0 \) such that \(\tilde{G}_1 \neq 0 \) on \(\Omega_2 \). Define \(\tilde{H}_1^n := H_1^n - \beta^n \tilde{G}_1 \) where \(\beta^n := H_1^n / \tilde{G}_1^n \) on \(\Omega_2 \). Then \(\tilde{H}_1^n \Delta S_1 = H_1^n \Delta S_1 \) on \(\Omega_2 \). We repeat the entire procedure on each \(\Omega_2 \) with the sequence \(\tilde{H}_1^n \) knowing that \(\tilde{H}_1^n = 0 \) for all \(n \). Apparently, after a finite number of steps we construct the desired sequence.

Let the claim be true for \(T - 1 \) and let \(\sum_{t=1}^T H_t^n \Delta S_t - r^n \rightarrow \zeta \) a.s. where \(H_t^n \) are \(\mathcal{F}_t \)-measurable and \(r^n \in L_+^0 \). By the same arguments based on the elimination of non-zero components of the sequence \(H_t^n \) and using the induction hypothesis we replace \(H_t^n \) and \(r^n \) by \(\tilde{H}_t^k \) and \(\tilde{r}^k \) such that \(\tilde{H}_t^k \) converges a.s. This means that the problem is reduced to the one with \(T - 1 \) steps.

(b) \(\Rightarrow \) (c). Trivial.

c) \(\Rightarrow \) (d). Notice that for any random variable \(\eta \) there is an equivalent probability \(P' \) with bounded density such that \(\eta \in L^1(P') \) (e.g., one can take \(P' = C e^{-|\eta|} P \)). Property (c) (as well as (a) and (b)) is invariant under equivalent change of probability. This consideration allows us to assume that all \(S_t \) are integrable. The convex set \(A_t^1 := A_t \cap L^1 \) is closed in \(L^1 \). Since \(A_t^1 \cap L_+^0 = \{ 0 \} \), Lemma 3 ensures the existence of \(\tilde{P} \sim P \) with bounded density and such that \(\tilde{E} \xi \leq 0 \) for all \(\xi \in A_t^1 \), in particular, for \(\xi = \pm H_t \Delta S_t \) where \(H_t \) is bounded and \(\mathcal{F}_{t-1} \)-measurable. Thus, \(\tilde{E}(\Delta S_t | \mathcal{F}_{t-1}) = 0 \).

(d) \(\Rightarrow \) (a). Let \(\xi \in A_T \cap L_+^0 \), i.e. \(0 \leq \xi \leq H \cdot S_T \). As \(\tilde{E}(H_t \Delta S_t | \mathcal{F}_{t-1}) = 0 \), we obtain by conditioning that \(\tilde{E} H \cdot S_T = 0 \). Thus, \(\xi = 0 \). \(\square \)

Acknowledgement. The authors are grateful to H.-J. Engelbert and H. von Weizsäcker who indicated that Lemma 2 allows to avoid measurable selection arguments.

References

