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THE PRINCIPLE OF VARIATION

FOR

RELATIVISTIC QUANTUM PARTICLES

Masao NAGASAWA1 and Hiroshi TANAKA2

Abstract

A multiplicative functional of (time-inhomogeneous) jump Markov processes with
continuous time is constructed to establish the absolute continuity between jump Markov
processes. After renormalizing the multiplicative functional, the principle of variation of
stochastic processes is applied in constructing Schrodinger processes of pure-jumps which
describe the movement of relativistic quantum particles.

1. . Introduction

Let {X(t), t E [s, b], P(S,x), (s, x) E [a, b] X Rd} be a conservative diffusion process
determined by a time-dependent elliptic differential operator

As = 1 2  (03C303C3T)ij(s, x) ~2 ~xi~xj +  bi(s, x) ~ ~xi, (1.1)

and set

u(s, x) = P(s,x)[f(X (b))],3

for smooth/vanishing at infinity. Then u(s, x) solves the terminal value problem

s e 
dS 

+ Asu = 0, S E [a, b),

with terminal values

u(b x) = f(x).
If we define

x) = 

with the Kac functional
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where c(r, jc) may take positive and negative values, then jc) solves the terminal
value problem

~w ~s + (As + c(s, x)I)w = 0, s ~ [a, b),

with terminal values

~(&#x26;,j:)=~).

We define the renormalization nts of the Kac functional mts by

~=20142014201420142014201420142014201420142014~~~)),
where

~,~)=P(,~)[~].

Then /2~ satisfies the normality condition

= 1. .

Therefore, we can define a transformed probability measure by

.

The renormalized process (X(~), (~? [~, 6] is a conservative diffusion

process, and can be adopted as a reference process in variational principle of diffusion
processes (cf. Nagasawa (1993)).

The objective of the present paper is to establish the same transformations for pure-
jump Markov processes determined by the fractional power generator

My = -~-A~+ K~I + K’1,

instead of As, where X* is a non-negative constant. Namely, let {~(~), ~ [~, 6],

Q(s,x), (s, jc) E [~, 6] X be the Markov process determined by Ms (cf. Nagasawa-
Tanaka (1998, 1999) for the existence). We will, first of all, construct its multiplicative
functional m(s, t), which is not of Kac type, such that the expectation
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solves the terminal value problem

_A~+ ~2I+ xI u = 0, sE a b
as 

(- s ) , [,)~

with terminal values

u(b, x) = f(x),
where

Acs = 1 2  (03C303C3T)ij(s, x) ~2 ~xi~xj +  bi(s, x) ~ ~xi + c(s, jc)I, (1.2)

which has a potential function c(s, x) taking values in [-00, x2]. We will then discuss the
principle of variation of pure-jump Markov processes. For applications in relativistic
quantum theory, we refer to Nagasawa (1997,1996).

2. Pure-Jump Markov Processes

We denote by Qe the space of continuous paths taking values in Rd and by W(dw) the
Wiener measure on Qc. For each frozen s E [a, b], we then consider a stochastic
differential equation

03BEt = x + t0 03C3(s, 03BEr)dw(r) + t0 b(s, 03BEr)dr, (2.1)

under the condition that the entries of the matrix 6(s, x) and vector b(s, x) are bounded
and continuous in (s, x) E [a, b] X R and Lipschitz continuous in x for each fixed s
(the Lipschitz constants are bounded in s). It is well-known that under this condition there

exists a unique solution ~t(s, x, w) of equation (2.1), and it is Borel measurable in
(t, s, x, w) (cf., e.g. Skorokhod (1965), Ikeda-Watanabe (1989)). The solution defines
a diffusion process {03BEt(s, x, w), t >_ 0, W } . For each s E [a, b] we denote its path-
space realization by {X (t), t > 0, Psx, x ~ Rd}, and its transition probability by

pS(t, x, B) = E B ].

We remark that is a core of the generators of the semi-groups of the diffusion
processes.

Let {Q, P} be a probability space, and N(dsd03B8dw, m), 03C9 E SZ, be a Poisson
random measure on (a, , with the mean measure ~l =

where
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= 

with a non-negative constant K (cf. Sato (1990), Vershik-Yor (1995), Nagasawa (1997,
1996)). We consider a stochastic differential equation of pure-jumps

y(t) = x + j t] y(r-), w) - y(r-) }N(drd9dw). (2.2)

The existence and uniqueness of solutions of equation (2.2) is shown in Nagasawa-Tanaka
( 1998), in which we have written equation (2.2) as

y(t) = x + (s,t] (0,~) 03A9c
{03BE03B8(r,y(r-), w) - y(r-)}M(drd03B8dw)

+ (s,t] (0,~)
{ 03B80 W[b(r, 03BEu(r, y(r-), .))]du}dr03BD(03BA)(d03B8), (2.3)

where M(drd03B8dw) = N(drd03B8dw) - (drd03B8dw). We have solved equation (2.3) with
the help of the estimates

W[|03BEt(r, x, .)) - 03BEt(r, y, .)) |2] ~ const. |x - y |2, t ~ N, (2.4)
and

W [ ~ ~r(r, y, ~)) - y) ~2 ] - const. (t + t 2). (2.5)

Let ys, x(t) be the unique solution of equation (2.2), and set

= 

for bounded Borel measurable functions f on Rd. Then Qs r , s _ t, are the evolution
operators for 

~ sE [ a b ,
as

where

Msf(x) = ~0{ ps(03B8, x, dy)f(y) - f(x)}03BD(03BA)(d03B8)

= {--As + 03BA2I + 03BAI}f, (2.6)
with As given in (1.1), that is,
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and
lim{Qstf(x)-f(x)}=Msf(x),

for f ~ C~03BA(Rd).

Let { Y(t), t e [s, b], Q(s, x), (s, x) E [a, b] X be the standard path-
space realization of the pure-jump Markov process [s, b], P }, where ys,x(t)
is the unique solution of equation (2.2). To be precise, Qd is the space of all right-
continuous paths w(t), t E [a, b], with left-limits; and Y(t) = Y(t, . ) is the coordinate

function defined by Y(t, w) = w(t) for w E Qd; is the smallest 6 field on ~d which

makes Y(r) measurable for r e [s, t] ; Q(s,x) is a probability measure on 
such that { Y(t), t E [s, b], Q (s, x) } is identical in law to the process { ys,x(t),
t E [s, b], P } . Therefore, we have

Qs,tf(x) = 

From now on when we shall consider the path space realization, it will be simply denoted
as {Y(t),tE [S, b], Q(s,x) I ~

Let x) be a continuous potential function taking values in [-~, 1(2], i.e.,

- c(t, x) _ x2  oo. (2.7)

We then define a kernel pcs(t, x, B) by

pcs(t, x, dy)f(y) = Psx[f(X(t))exp(t0c(s, X(u))du)].
We notice that the kernel does not satisfy the normality condition, because of the potential
function c(s, x) which may take positive and negative values.

We define the fractional power generator Mf by

Mcsf(x) = ~0{pcs(03B8, x, dy)f(y) - f(x)}03BD(03BA)(d03B8)

= {--Acs + 03BA2I + 03BAI}f, (2.8)
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where Acs is given in ( 1 .2). The evolution operators Qcs, t, s  t, for

S G ia, bi,

are constructed in Nagasawa-Tanaka (1998, 1999); namely, there exists a system of
operators Qcs, t satisfying

Qcr,sQcs,t = Qcr,t, a ~ r ~ s ~ t ~ b,
and

lim{Qcs,tf(x) - f(x)} = {--Acs + 03BA2I + 03BAI}f, (2,9)

forf e In the next section we will construct a multiplicative functional m(s, t)
of the pure-jump Markov process ( Y(t) , t e [s, b] , Q(s,x) ) such that

Ql if(x) = Qs,x>lf(Y(t))m(s, t)I ,

where m(s, t) is not of Kac type.

For later reference we state a lemma on the system of Lévy measures of the Markov

processes {Y(t) , t ~ [s, b] , Qs, x> ) .

Lemma 2.1.4 Set

ps( 03BD( 03BA)
, x , B ) = ~0 ps( 03B8, x, B) 03BD( 03BA)(d03B8).

Then the family {pr(03BD(03BA), y , B ) ; r e [a , b] , X e is the system of L£vy
measures of the Markov process ( Y(t), t e [s, b], Qs,x) ) more precisely, for any
non-negative Borel measurable function f(y, z) o n Rd Rd 

with f(y, , y ) = 0 and for

any non-negative Fts-predictable process g(t)

Qs,x>I £ g(r)f(W (r-) , W (r)) I

W(r-) * W(r)

= Qs,x>I ~ b g(r)dr ~ f(W(r-) , W(r-), dy)1 .

4 Cf. e.g. Ikeda-Watanabe (1%2), Watanabe (I%4), Dellacherie-Meyer (1987)
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3. A Multiplicative Functional

For each s E [a, b], we first prepare a pair of kernels

ps(03BD(03BA),x,B) = ~0ps(03B8,x, B)03BD(03BA)(d03B8), (3.1)

and

pcs(03BD(03BA),x,B) = ~0 pcs(03B8, x, B)03BD(03BA)(d03B8). (3.2)

For U = { y : I y - x I  E } , E > 0, we have, in view of (2.5),

ps(8, x, Ue) = W[ I ~~(s, x, ~) - x) I > E]  E’2W[ 1 ~)) - x) ~2]

_ const. E-2(8+ 82),

and hence both x, B) and x, B) are finite measures in the set U~.
Moreover, for fixed s and x the measure x, B) is absolutely continuous with

respect to the measure x, B ) and hence there exists the Radon-Nikodym
derivative

q(s, x, _ dy) 
. (3.3)~(S~ x~ y) - 

ps( x, dy ) 
. ( )

We can take a nice version of it such that 17(s, x, y) is Borel measurable in (s, x, y) E

x, y)  for x ~ y, and put x, x) = 1 for

x E Rd. We then set

m(s, t, w) _ ~ 
i

w(r-) ~ w(r)

where the absolute convergence of the infinite product is not assumed and hence it is in

general not well-defined. To avoid this ambiguity we will actually define m (s, t, w) as
follows. We first notice that we can represent ~j(s, x, y) as

~l(S~ x~ y) = ~1^(s~ x~ y)~i~’(S~ x~ y),
where

~^(s, x, y) = ~(s, x, y) and ~~(s, x, y) _ x, y) v 1.
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We set

m ^(s, t, w) _ ~ ~^(r, w(r-), w(r)),
s~r~t

w(r-) * 

t, w) _ ~ ~"(r, w(r-), w(r)).
s_r_t i

w{r-) * w(r)

Then m ^(s, t, w) and t, w) are well-defined, the former taking values in [o,1 ]
and the latter in [1, ~]. Therefore, we can define m(s, t, w) by

m(s, t, w) = m^(s, t, t, w), (3.4)

with the convention 0 ~ ~ = 0.

We begin with a simple case of a non-negative c(t, x) satisfying

0 - c(t, x) _ x2. (3.5)

In this case x, B) _ pcs( 03BD( 03BA), x, B) and 1 _ x, y)  . Therefore,
m(s, t) in (3.4) is well-defined as a functional taking values in [0, ~] (in fact, we will
show Q(s,x)[m(s, t) ] in Lemma 3.1 below), and has the multiplicative property

m(r, s, w) m (s, t, w) = m(r, t, w), a _ r _ s _ t _ b, w E Qd,

and

m(s, t, w) is Fts-measurable.

Lemma 3.1. . Assume (3.5). Then for fixed s E [a, b] and x E Rd

~ a ~ s ~ t ~ b, (3.6)
and

lim Q(S,x)[ m(s, t)] = l, (3.7)

where

cl = v(x)(d8)(eK2e-1)= (ex2e-1) 1 d8  ~.

a a 2~ 8 ~’~

Proof. For ~ > 0, we set
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m~(s, t, w) _ ~ ~(r, w(r-), w(r)).
s_r_t t

I w(r) - w(r-) I > E
Then

t, w) - 1= ~ { r, w) - r-, w) }
s_r_t t

I w(r) - w(r-) I > ~

- ~ r-, w) { w(r-), w(r)) -1 } .
s_r_t t

I w(r) - w(r-) I > ~

Since t, w) T m(s, t, w) as E ~. 0, we have

m(s, t, w) -1= ~ m(s, r-, w) { w(r-), w(r)) -1 } .
sSr_t t

w(r) ~ w(r-)

To avoid infinity we set m R (s, t, w) = m(s, t, w) n R, for R > 1. Then

mR(s, t, w) -1 _ ~ mN(s, r-, w){ w(r-), w(r)) -1 },
s_r_t t

~ w(r-)

and taking the expectation of both sides, we have

Q(s, x)[ t~ ~’~’) J -1

~ Q(s, x)[ ~, r-~ w) { w(r-)~ w(r)) - 1 } J.
s_r_t t

~ w(r-)

Then by Lemma 2.1

Q(s, x)[ t~ w) J

r

_ 1 + ~ mR(s, r-)dr { Z) - 1 dz)J

t -

_ 1 + Q(S, x)[ ~ m R (s, r)dr ~ { pr (6, w(r-), R d) -1 } v(x)(d9)J.
Since
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~0 {pcr(03B8,w(r-), R d) - 1 } 03BD(03BA)(d03B8) ~ ~0 {e03BA203B8 - 1 } 03BD(03BA)(d03B8) = cl  ~,
0 0

we have

r

Q(s, x)[ t~ w) l -1 + cl x)[ 
which implies

Q(S, x)[ t) l ~ e~’(r - s)~

by Gronwall’s lemma. Letting R T ~, we obtain (3.6). The second assertion (3.7)
follows from (3.6), since Q(S, x)[ m(s, t) ] >_ l. This completes the proof.

We now discuss the general case that - ~  c(t, x) _ x2. Then we have

Lemma 3.2. Let {m(s, t, w), a _ s  t _ b} be defined by (3.4). Then it is a
multiplicative functional, i.e.,

(i) m (s, t, w) is Fts-measurable.

(ii) For fixed s E [a, b] and x E Rd

m(r, s, w) m(s, t, w) = m(r,t,w), a_r_s_t_b, (3.8)
and

Q(s, x)[ t) ] ~ S). (3.9)

Proof. The first assertion and equation (3.8) are obvious by definition. Lemma 3.1
implies

Q(s, x)[ m"(s, t) ] S 
- S), a _ s _ t _ b.

Since m (s , t) _ m"(s, t) by definition, we have (3.9). This completes the proof.

Because of the negative part of potential functions c’(t, x) = c(t, x) ~ 0, in other
words by the factor m ̂(s, t, w) of m(s, t, w) in (3.4), it is not automatic to have

lim Q(s,x)[ m(s, t) ] =1. (3.10)

We introduce a condition

~0 Psx[ 1- exp(03B80 c-(s, X(r))dr)]03BD(03BA)(d03B8) ~ c0  ~. (3.11)
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Lemma 3.3. Let { m (s, t, w ), a _ s  t _ b) be defined by equation (3.4).
Then equation (3.10) holds under the condition in (3.11).

Proof. For E > 0 we set

m~ (s, t, w) _ IT ~^(r, w(r-), w(r)),
t

Iw(r) - w(r-) I > ~

m(s, t, w) _ IT ~"(r, w(r-), w(r)),
t

I w(r) - w(r-) I > E
and

t, w) = m~ (s, t, w)m~ (s, t, w).
Then

t, w) -1= - ~ r-, w){ 1- ~^(r, w(r-), w(r))}
t

I w(r) - w(r-) I > E

+ ~ r-, w) { ~~(r, w(r-), w(r)) -1 },
sr_t

I w(r) - w(r-) I > E

where, since each term of the first and second sums on the right-hand side is non-negative,
we have

mE(s, t, w) -1 >_ - ~ r-, w){ 1- ~ ^(r, w(r-), w(r)) } .

w(r) ~ w(r-)

Let us define ?~-(r, x, y) with c-(t, x) = c(t, x) A 0. Then ?~-(r, x, y) _ 1~^(r, x, y),
and hence

t, w) - 1 >_ - ~ r- w) { 1- ~-(r, w(r-), w(r)) } .
t

w(r) ~ w(r-)

Taking the expectation of both sides, we have

Q(s, t, w)] -1

>- - Q(s, x)f ~ r-~ w) f 1- ~-(r~ w(r-)~ w(r)) } ] 
srt

w(r) * w(r-)
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where we apply Lemma 2.1, then in view of (3.1), (3.2), (3.3) and (3.4),

t 
_

= - Q(s, x)[ ts m~(s,r)dr { 1- ~-(r, w(r-), z) } pr(v("), w(r-), dz)].
Since

{ 1- ~?-Cs~ x~ Z) x~ dz)

= ~0 Psx[ 1- exp(03B80 c-(s, X(r))dr)] 03BD(03BA)(d03B8) ~ c0  ~,

by (3.11), we have
t

Q(s, x)[ mE(s, t)] ~ 1 - c0 ~ Q(s, r)Jdr. (3.12)

We notice that (3.9) holds for m~(s, t), that is,

Q(s, x)[ t) ] ~ - s).

Combining this with (3.12) and making E ~. 0, we have

r

s) > x)[ t)] > 1 - ~o - s)~

which implies (3.10). This completes the proof.

Remark. Since

e e

1- exp( 03B80 c-(s, X(r))dr) - (e 03BA03B8 -1 )  1- exp(03B80 c(s, X(r))dr)

e

_ 1- exp( ~ c-(s, 
the condition in (3.11 ) is equivalent to

~0 Psx[ 1- exp(03B80 c(s, X(r))dr)] 03BD(03BA)(d03B8) ~ c0  ~.
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For this a sufficient condition is the one given in Nagasawa-Tanaka (1998), i.e.,

r

PX[ 1- exp( , X(u))du) ] - const. ra, a > 1/2.

Therefore, if the potential c(t, x) is a continuous function taking values in [- ~, K2]
and satisfying (3.11 ), then

Ms f(x) _ { x~ f (x) } 0
- e

- ~ Px[ ~ c(s, X(r))dr) -1 
+ ~ Px[ f (X (o)) - f(x) } ] 

is well-defined and bounded in (s, x) for f E 

For any bounded measurable function f we set

Qs,rf (x) = Q(s,x)[f (Y(t))m(S, t) ]. . (3.13)
Then we have

Lemma 3.4. Assume (3.11 ) and let Qcs, t fbe defined by (3.13). Then

Qcs,rQcr,tf = Qcs,tf, 
for a ~ s ~ r ~ t ~ b, (3.14)

and

lim Qcs,tf(x) = f(x), for f ~ C0(Rd), (3.1 S)

where C0(Rd) denotes the space of continuous functions on Rd vantshing at infinity.

Proof. The Markov property of { Y(t), t E [s, b], Q(s,x) } combined with equation
(3.8) for m(s, t, w) yields equation (3.14). By Lemma 3.3

lim Qs rf(x) = lim Q(S,x)[f(Y(t))m(s, t) ] = ’ ’

This completes the proof.
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Lemma 3.5. Let y(t) be the solution of equation (2.2), or equivalently of equation
(2.3), and define E > 0, by

yc(t) = x + 
x g, oo> x R 

{ ~ ~(r, y(r-), w) - y(r-)}N(drd9dw). (3.16)

Then

P[ I y(t) - 12 ] -~ 0, as 0,

and yE(t) also converges to y(t) uniformly in t E [a, b] via some sequence .

Proof. Rewriting (3.16) in the form of equation (2.3), we have

y(t) - y~(t) = (s, t] (0, ] 03A9c{03BE03B8(r,y(r-), w) - y(r-)}M(drd03B8dw)

+ (s,t] (0,~] {03B80W[b(r, 03BEu(r,y(r-),.)),du}dr03BD(03BA)(d03B8).

Therefore, applying Ito’s formula, we have

P[ - 12]  2P[(s, t] (0, ~] 03A9c03BE03B8(r, y(r-), w) - y(r-) 

+ 21 f (0, £] { f W[b(r, y(r-), 12,

where, with the help of the estimate in (2.5), the first integral is bounded by

const. (t - s) ( 8 + 82) v(x~(d 8),
which vanishes as E ~. 0, and since b(s, x) is bounded by assumption, the second integral
is bounded by

const. (t - s)( (0, ~]03B803BD(03BA)(d03B8) )2,

which also vanishes 0. This completes the proof.
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Theorem 3.1. Assume (3.11), and let be defined by (3.13) and Ms by

(2.8). Let f E and assume that Mf f(x) is continuous in (s, x). Then it

satisf ies
lim 6 - f(x) } = Ms f(x). (3.17)

’

Proof. Let : n = l, 2, ... } be the sequence of jump times of the Poisson

process = N((s, t] X(E, and with the solution y(t) of equation (2.2) set

t) _ ~ ~(r~ W E . (3.1$)
zn  t

Then it converges to

t) _ ~ ~(r~ y(r-)~ y(r))~ W E 
i

Y~Y-) * Y(r)

as E .~ 0, P-a.s. Let yE(t) be defined by (3.16), and f E Since

t) is a step function of t with a jump

~n) ~n-)
at each we have

t) - f(x)

- ~ 
i

- ~ zn-) { ?~(zn~ y(Zn-)~ y(zn))f~’~’~n)) - bY (3.18)
zn  t

= (s, t] (~, ~) 03A9cme(s,r-)

{~(r, y(r-), 03BE03B8(r, y(r-), y(r-), w)) - 
with

(z) = (~,r, w)(z) = f(y~(r-) - y(r-) + z),

which converges to f (z), via some sequence E~ ~. 0, by Lemma 3.5. Therefore, we have

t))] - f(x) = ~s, t] x(e, -) x 8, 
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where

FE(r, e~ ~>

= 1(~, ~)(r)m~(s, r-){ Rd~(r, y(r-),z)(z)pr(03B8, y(r-), dZ) -f(y(r-)) ).

Then, as ~ = ~i ~ 0,

F e(r, 9, m) ~ m (s, r-){ ( ~)~r, y~r-)~ 3’~r-)~ dZ) -.f~y~r-)) ) JRd

almost everywhere with respect to the measure Taking it for granted
that there exists a majorant of 8, co), i.e.,

I FE(r, 9, ~) I _ G(r, 9, co),
and

~ G(r, 9,  ~, (3.19)J (s, r] x (o, 
we have, by the dominated convergence theorem,

P[f(y(t))m(s, t))] - f(x) = (s, t] (~, ~) 03A9c 
F~(r, 03B8, 03C9)dr03BD(03BA)(d03B8)P(d03C9)

=P[(s, t] (0,~)
m(s,r-)

{Rd~(r, y(r-),z)f(z)pr(03B8, y(r-), dz)-f(y(r-))]dr03BD(03BA)(d03B8)]

= tsdrP[m(s, r-) ~0 {Rdpcr(03B8,y(r-),dz)f(z)-f(y(r-))}03BD(03BA)(d03B8)]s l0 Rd

= rt drP[m(s, r-)M; f(y(r-))],
which combined with Lemma 3.3 implies (3.17).
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Let us show that there exists a majorant G E of

8, (~). To this end, we define, with c+(t, x) = c(t, x) v 0 and c-(t, x) =

~+ (s, x, y) = pc+s(03BD(03BA), x, dy) ps(03BD(03BA), x, dy), ~ (s, x, y) = pc-s(03BD(03BA),x,dy) ps(03BD(03BA), x, dy ),
and

~ 
y(r’) # y(r)

Then

~1+(s~ x~ y) > 1, ~?_(s~ x~ y)  1,

~1-(S~ jc, y) ~ ~1(s~ jc, y) ~ ~1+(s~ x~ y),

I ~(s, x, y) -1 I _ (1 - ~-(s, x, y)) + (~1+(S~ jc, y) - 1),
and

t, w) _ m+(s, t, w).
We set

G(r, 8, ~) = { 1- 
~R’

+ f 
./R’

+ m+ (s, r-) p(r, 8),
where

p(r, 9) = sup I ( pr(9, y, dx)f(z + x) - f(z + y) I
y~ z Rd

= sup I P[f(z + ~8(r, y, w))] - f(z + y) I.
y, z

Then

I FE(r, 9, ~) I _ G(r, 8, ~).

It remains to show (3.19). Sincere applying Ito’s formula, we have

P[ g(~(r~ y, w))] - = y, 
0

where g(y) = f(z + y). Therefore, there exists a constant c2 depending on f but not on
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{r, 8) such that

Therefore,

( m+(s, r-)p(r, 

 c2 ( ( 9n(211 f I h)v(K)(d8)  oo, (3.20)
~ ~0

since

P[m+(s~ r)~ ~ e~~(t - s)~ (3.21)
by Lemma 3.1. Moreover,

f v(")(de) f { 1- ~-(r, y(r-)~ z) y(r-)~ dz) ~ co  °°, (3.22)
~0 ~R~

and

f v(")(de) f { ~1+(r~ y(r-)~ z) - 1 }pr(~~ y(r-)~ dZ) - ci  °°. (3.23)
~0 ~R~

In fact, for (3.22)

f { 1- ~-(r~ y(r-)~ Z) }pr(8! y(r-)~ dz)
~0 ~R~

- f { 1- ~1-(r~ y(r-)~ Z) lpr(v(")~ y(r-)~ dZ)
~R~

- f {pr(v(")~ y(r-)~ dz) -pr (v(")~ y(r-)~ dZ) }
~R~

_ f v(~(d8) { 1- pr -(9, y(r-), Rd) {
~0

_ 

~o o

by the condition in (3.11). Thus we have shown (3.22). For (3.23) we have
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f {~(r~(r-)~)-l}p,(~y(r-)~z)
o ~R~

= Rd {~+(r, y(r-), z)-1}pr(03BD(03BA), y(r-), dz)

= ~0 03BD(03BA)(d03B8){pc+r(03B8,y(r-),Rd)-1}

~ ~003BD(03BA)(d03B8)(e03BA203B8 - 1) = c1,

by Lemma 3.1. Combining (3.20), (3.21), (3.22) and (3.23), we have (3.19). This

completes the proof of Theorem 3.1.

We have thus shown that u(s, jc) = solves the evolution equation

~u ~s 
+ Mcsu = 0, s ~ [a, b], with u(b, x) = f(x).

Let Fts = 03C3{Y(t):s~ r ~ t}. We can then define a measure Qc(s,x) on 03A9d by

] = m(s, 6)]. . (3.24)

for any bounded ~ -measurable function F. However, the measure Q(s,x) is the
"measure with creation and killing", and does not immediately define a stochastic process,
since the multiplicative functional m(s, t) does not satisfy the normality condition, i.e.,
Q(s, x)[ m(s, ~)] ~ L This point will be discussed in the next section.

4. The Renormalization of Multiplicative Functional
and Variational Principle

In this section we assume that As and A f in (1.1) and (1.2), respectively, are given by

As = 1 20394 +  bi(s, x)~ ~xi, (4.1)

and
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Acs = 1 2 0394 +  bi(s, x) a + c(s, jc)I, (4.2)
2 1=1 axi

where A is the Laplace-Beltrami operator

0394 = 1 03C32(x) ~ ~xi (03C3(x) (03C303C3T(x))ij~ ~xj),
with a positive definite diffusion matrix where we denote a2(x) = det 
To adopt the operators AS and A s in (4.1) and (4.2), respectively, we need to replace the
drift coefficient b(t,x) in equation (2.1) by x) = b(t,x) + ba(x) with a correction
term

b03C3(x)j = (03C32(x) (03C303C3T(x))ij).a( ~ 
2 axl 

. ( 2( ) ( ( )) ).

If 6 is independent of x, then the correction is not necessary and b°(t, x) = b (t , x).

Let { Y(t), t E [s, b], Q(s,x)} be the path space realization of the conservative pure-
jump Markov process determined by Ms in (2.6). To define a stochastic process
determined by the operator Ms in (2.8), which contains a potential function c(s, x), we
renormalize (cf. Nagasawa ( 1993)) the multiplicative functional m(s, t) in (3.4), namely
we set

= 

~(s, Y(s)) 1 t) ~(t, Y(t)),

with ~(s, x) defined by
~,(S~ x) = Q(s,x)[m(S~ b) ]~

where we assume ~(s, x) > 0. Then the renormalized multiplicative functional t)
satisfies the normality condition

t)] = 1. for a _ s _ t _ b.

We define the renormalization Q(S,x) of the measure by

(4.3)

or, what is the same, with the renormalized multiplicative functional t) and Q(S,x)
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Q(s,x)[ F J = F b) J. .

We call { Y(t), t E [s, b], Q(s,x) } the renormalized process.

Before applying the principle of variation to the renormalized processes, we recall
some definitions and theorems (cf. Chapter V of Nagasawa ( 1993)). The relative entropy

H( P I P ) of P relative to P is defined by

H(P|P) = (log dP dP )dP, if P « P,

= ~, otherwise,

for P , P E Ml(Q), where Ml(Q) denotes the space of probability measures on a
measurable space {Q, $ } . .

If a subset A of Ml(Q) is convex and variation closed and contains at least one
element P with H( P I P )  oo, then there exists the unique Csizar projection Q E A such
that

inf H(PIP) = H(QIP), ,
Pe A

where P is not in the set A, and Q is a projection of P on the set A, minimizing the relative
entropy, for a proof cf. e.g. Nagasawa (1993).

For a probability measure k(dx) = k(x)dx such that log (~(a, x)/k(x)) E ,

we define the renormalized measure by

P[ F J = ,

where Q(a,x) is the renormalization of Q(a,x) defined by (4.3). .

For a pair of prescribed probability measures { ~la, where = 

with a density t(x), we define a subset Aa, b of M1(03A9d) by

A a, b = { P E fort= a, b } .

Then the subset Aa, b is convex and variation closed. We assume that is

admissible, that is, A a, b contains at least one element P with H( P I P ) 



22

Then there exists a unique Csizar’s projection Q E Aa, b such that

inf H(PIP) = H(QIP).

We call { Y(t), t E [a, b], Qd, Q} the (pure-jump) Schrodinger process with the pair
as the prescribed marginal distributions. This is the variational principle of

Markov processes, cf. Nagasawa (1993).

Let x) be the measure on S2d given in (3.24), and define a probability measure

p(A xB) on Rd Rd by

p(A B) =  dx k(x) 03BE(a, x) 1 a(x)1A9x)Qc(a,x)[1 b(Y(b))1B(Y(b))],

where is the indicator function of the support of a measure . Denote by Ea, b the
set of marginal distributions on Rd X Rd of all p E Aa, b at t = a, b. Since the set Ea, b is
convex and variation closed, we have the unique Csiszar projection q(A X B) such that

inf H( p l p ) = H( q l p ),

through which we obtain a pair of functions such that

dq dp = 03BE(a, x) k(x) a(x)03C6b(y),

which implies that the pair satisfies

= 

,ub(B) = 1B(Y(b))J 

for the prescribed marginal distributions and The pair { cpa, 03C6b} is the so called

Schrodinger’s entrance-exit law. Moreover, we have the fundamental formula of the

Schrodinger process { Y(t), t e [a, b], Q} such that

Q[F] = ~ (4.4)
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which coincides with the Schrödinger representation of the measure Q, where x) is the

measure on S~d defined in (3.24), cf. Nagasawa (1993,1997).

We denote the density function of Y(t) E dy] by x, t, y) which obeys
the Chapman-Kolmogorov equation. The formula in (4.4) implies, as a special case,

Q[f(Y(t))] = Z, t, x, b, y)dytpb(y). (4.5)

Let us define

= z~ t~ x)~

(4.6)

tPr(x) = x~ b~ 

Then equation (4.5) yields

Q[f(Y(t))] = dxcpr(x)tpr(x) f(x), (4.7)

that is, the distribution density of the Schrodinger process { Y(t), t E [a, b],
03A9d, Q } is given by

_ 

which is Schr’odinger’s factorization.

We define a transition probability density by

x~ t~ y) = 1 x~ t~ (4.8)

It is clear by definition that q(s, x, t, y) satisfies the normality condition

q(s, x, t, y)dy = l.
Then, combining equations (4.6), (4.7) and (4.8), we have

Q[f(Y(t))] = x~ t~ 



24

More generally we have the Kolmogorov representation

Q[f(Y(tl), ... , , Y(tn_1), Y(tn))]

=  dxa(x)03C6a(x)  q(a, x, t1, x1)dx1q(t1, x1, t2, x2)dx2 ...

... 

... , , xn),

which proves that the Schrödinger process { Y(t), t E [a, b], , Qd, Q }, with the

filtration .~’ = 6 { Y(s) : a _ s _ t}, is a Markov process with the transition probability

. q(s, x, t, dy) = q(s, x, t, y)dy,

cf. Nagasawa ( 1993). Let us set

Qs, rf (x) = x~ t~ (4.9)

for any bounded measurable function f. Then we have

Theorem 4.1. Let Qs, rf be defined by (4.9). Then, for 

lim 1 {Qs, f(x)}

= - - {1 2 0394 + b(s, .).~ + (03C303C3T~ log 03C6s).~} + (203BA03C6s)I f + (03BA03C6s)f,
(4.10)

where

- 1 a +x - 1 ,

~s as ~s
(4.11)

= 1 a +x2 - .

~s as ~s

Proof. In view of (4.8) we have

Qs, rf (x) = 1 

where
where
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= x~ t~ y)f(J’)d3’.
Then

1 t-s ( s, tf - f) = 1 03C6s 1 t-s ( Qcs,t(03C6tf) - 03C6sf)

= 1 03C6s 1 t-s {Qcs,t(03C6sf) - 03C6sf} + 1 03C6s 1 t- s Qcs,t((03C6t 

- 03C6s)f).

Therefore,

1 t-s { s, tf - f }

= 1 03C6s 1 t - s{Qcs,t(03C6sf) - 03C6sf} + 1 03C6s 1 t - sQcs, t ((03C6t - 03C6s)f)

= 
1 03C6s Mcs(03C6sf) + 1 03C6s ~03C6s ~s f, (4.12)
~s ~s as

where the first term is, in view of equation (4.8),

1 03C6s Mcs(03C6sf) = - 1 03C6s - Acs + 03BA2I (03C6sf) + 03BAf, (4.13)

with A cs given in (4.2). To compute the right-hand side of equation (4.13) we set

K(f) = 1 
Then

K2(f ) = 1 (-As + 
which yields

K( ) _ fl f,

where A ~p is the (~~-transformation of - As + K2I, that is,

A ~Pg = 1 C_ As + x2I 
It is routine to show that
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A03C6g = 1 03C6s(-Acs + 03BA2I)(03C6sg)

= -{1 20394 + b(s, .).~ + (03C303C3T~log 03C6s).~}g

+ 03BA2g - g 03C6s {1 2 039403C6s + b(s, .).~03C6s + c(s, x)03C6s}, (4.14)

(cf. Nagasawa (1993)). Since 03C6s satisfies

=o
as

we have

(~-~I)~-(-A~+~1)~=0,as

which implies that the second line on the right-hand side of equation (4.14) is

03BA2 g - g 03C62 {1 2 039403C6s +bs .).~ 03C6s + c(s, x)03C6s} = {1 03C6s (~ ~s + 03BAI)203C6s}g

= 
,

and that the equations in (4.11) hold. Hence the first term in (4.12) (i.e. (4.13)) is equal to

- -{1 20394 + b(s, .).~ + (03C303C3T~ log 03C6s).~} + (203BA03C6s)I f + 03BAf
,

to which adding we have the representation in (4.10). This completes the
proof.

Remark. Let us assume that b(s, x) and c(s, x) do not depend on s, and consider a

stationary state. Then we have = with a constant 03BB. Therefore, 03BA03C6s does

not depend on and hence we have = 03BB + K* and 203BA03C6s = (03BB + 03BA)2. Thus the

representation in (4.10) reduces to theorem 29 in Nagasawa (1997).
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