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ON A TRIPLET OF

EXPONENTIAL BROWNIAN FUNCTIONALS

Larbi ALILI1, Hiroyuki MATSUMOTO and Tomoyuki SHIRAISHI

Abstract. We study the three-dimensional joint distribution of a Brownian

motion and the integrals of its exponential and its exponential squared from

some points of view. We show an explicit expression of the Laplace transform of

the distribution, which gives an extension of Yor’s result on the two-dimensional

one. We apply the result to some problems, in particular, to the calculation

of an explicit form of the heat kernel of the semigroup generated by the Maass

Laplacian on the Poincare upper half plane.

1. INTRODUCTION

Let B = {Bt, t >_ 0} be a one-dimensional standard Brownian motion starting from

0. In this paper we are concerned with the Brownian functionals of exponential type

at and At defined by

(1.1) at = t0 exp(Bs) ds and At = t0 exp(2Bs) ds,
respectively. These functionals have recently been studied extensively by many au-

thors (see, e.g., [1], [3], [11], [15], [22] and [24]) in relation to mathematical finance,
Brownian motions on hyperbolic spaces, some disordered systems, generalized Bessel

processes and so on. In particular, the explicit form of the two-dimensional joint dis-

tribution of (At, Bt) is known by Yor [22] (see (2.3) in the next section) and it plays

important roles in those domains.

The purpose of this paper is to discuss the three-dimensional joint distribution of

(At, at, Bt) and to show some applications; in particular, we will show an explicit

formula, which is of simpler form than Fay’s original expression ([6]), for the heat

kernel of the semigroup generated by the Schrodinger operator Hk with constant

magnetic field or the Maass Laplacian on the Poincare upper half plane H2.

lPartially supported by the Austrian Science Foundation (FWF) under grant Wittgenstein-Prize
Z36-Mat.
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We will show explicit expressions of the Laplace transform

(1.2) E[exp(-1 203BB2At); at ~ dv, Bt ~ dy , t > 0, 03BB > 0, v > 0, y ~ R,

and, equivalently,

(1.3) E[exp = ~], k E R,

by means of the density function of the Hartman-Watson law (cf. Yor [21]). By

the Feynman-Kac formula, the latter gives the heat kernel corresponding to the

Schrodinger operator with the Morse potential on R defined by

HM03BB,k = -

1 2 d2 dx2 + VM03BB,k, VM03BB,k(x) = 1 203BB2e2x -03BBkex .

In ~11~, the close relation between Hk and H ~ has been shown and, in particular, it
has been shown that is obtained by a separation of variables from the operator

Hk on H2.

The three-dimensional distribution has been considered by Leblanc [13] for the

study of some models, in particular of a stochastic volatility model introduced by

Hull and White [10], in mathematical finance and by Ikeda-Matsumoto [11] for the

study of Hk and mentioned above. They have considered the Laplace transform

(in time t) of the distribution or the Green functions for by several methods. Alili

[1] has also studied it and has given an alternative decomposition via an exponential
formula of the excursion theory.

We will show a closed form for (1.2) by reducing the computations on the three-

dimensional distribution to those on the two-dimensional one and by using Yor’s

result. We need not consider the Laplace transform in time or the Green functions

for However, it should be noted that, starting from the explicit expressions of

the Green functions for which are obtained by the general theory of the Sturm-

Liouville operators (see [11] and also Section 4) and using the integral representation
of a product of the Whittaker functions, we can also show our result for (1.2) by

analytic methods on the basis of (1.3). Furthermore we are able to carry out the

explicit calculations for the Laplace transform by using time change argument instead

of Yor’s result and to see the correspondence between the probabilistic and analytic

methods. Thus we approach our problem from several points of view and, in the

course of study, we obtain other proofs of Yor’s fundamental result.



398

We end this Introduction by mentioning the organization of this paper. An explicit

expression for (1.2) will be given in the next Section 2 and the proof will be given in

Section 3. In Section 4 we will obtain a closed form of the heat kernel for H ~ by using
the result in Section 2. An important feature is that we can trace our way back, as

we shall see in Sections 3 and 4. We will show a closed form of the heat kernel for Hk

in Section 5. Other applications of our results, to the studies on the distributions of a

hyperbolic drifted diffusion process which appears in relation to generalized Bougerol

identity and of the asset process in the Hull-White model mentioned above, will be

given in Section 6.

2. MAIN RESULT

We first recall the Hartman-Watson distribution. For details, see Yor [21]. For

r > 0, the probability distribution on ~0, oo) characterized by

( 2.1 ) = > 0

is called the Hartman-Watson distribution, where Iv is the usual modified Bessel

function. The probability measure has the density with respect to the Lebesgue

measure given by

~r (dt) = 03B8r(t) I0(r) 
dt,

where

(2.2) 03B8r(t) = r (203C03t)1/2e03C02/2t~0 e-03BE2/2te-r cosh(03BE) sinh(03BE) sin(03C003BE/t) d03BE.

For the distribution of the exponential functional At given in the Introduction, Yor

[22] has shown

(2.3) P(At ~ dv, Bt ~ dx) = 1 vexp(-1+e2x 2v)03B8ex/v(t) dvdx, v > 0, x ~ R,

which is also proved by modifying the arguments in Section 4. By the self-similarity of

Brownian motion, we may rewrite (2.3) in the following form which is more convenient

for our purpose:

(2.4) P(at E dv, Bt E dx) _ x) dvdx,

where

~t(v~ x) = 2v ) °
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We set

~ ~=~’~=~~’ ~o,.>o,.eR.
Then we show the following:

Theorem 2.1. . For > 0, A > 0, v > 0,~ ~ R, it holds that

(2.6) 

= = ~] 

= 

4sinh(A./2) ~-~ ~ ~C~- °

3. PROOF OF THEOREM 2.1

In order to prove Theorem 2.1, we consider

= E[exp ~~], ~ R,A > 0,

and show that we can reduce the calculation for this Laplace transform of the three-

dimensional distribution to some formula which are calculated by using Yor’s result

(2.3) on the two-dimensional distribution. For this purpose we prepare two lemmas.

Lemma 3.1. For any locally bounded Borel function p [0, oo) 2014)- R and A > 0, the

solution of the stochastic differential equation

dXt = dBt - 03BBexp(Xt + 03C6(t)) dt

is explicitly given by

Xt = Xo + Bt -log / 1 + A / /’~ exp(Xo + B, + .

Proof. We can prove the lemma by using Itô’s formula, but we give another proof

based on the ordinary differential equation method. In fact, only the continuity of

Brownian motion plays a role here. We set ~ = ~ 2014 ~. Then ~ satisfies

where /~ = Xo + Hence the process {~, ~ ~ 0} is absolutely continuous in

t and solves the equation

= dt.
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Therefore, since Bo == 0, we obtain

1 - = -A / ds.

The rest of the proof is easy. D

Lemma 3.2. Let {Xt, t ~ 0} be a one-dimensional Brownian motion starting from
0. Then, if 03BB > 0, the stochastic process 03BB = {03BBt, t ~ 0} defined by

(3.1) 03BBt = exp (-03BBt0 exp(Xs) dXs - 1 203BB2t0 exp(2Xs) ds)

is a (true) martingale with respect to the canonical filtration.

Proof. The local martingale property of 03BB is easily seen. Moreover, Itô’s formula

yields

- A / ~X. - ~ / 
= - A 1 - ~ / ~~ - ~A’ / 
= -1 203BB2 t0 (exp(Xs) - 1 203BB)2 ds + 1 8t + 03BB - 03BBexp(Xt)

and

A~ ~ exp(A + ~/8 - exp(A + 

which shows that A~ is bounded on any bounded time interval. D

Remark 3.1. By using the result mentioned in McKean [14], Section 3.7, the martin-

gale property of A~ corresponds to the conservativeness of the diffusion process given

as the unique solution of the stochastic differential equation dXt = dBt 2014 03BBexp(Xt)dt
considered in Lemma 3.1. This gives another proof of Lemma 3.1 in this case and

shows that the local martingale A~ is not a martingale if A  0. For such "strict"

local martingales, see [5], [16] and the references cited therein.

Now let X = {~~ ~ 0} be a one-dimensional Brownian motion starting from 0

defined on a probability space (f~, ~, P) and set ~ = 5 ~ ~}. Moreover, letting

A~ be the martingale given by (3.1), we define another probability measure P by
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Then Lemma 3.2 implies that the stochastic process B = {~~ ~ 0} given by

~ = Xt + A / 
is a Brownian motion under P by the Girsanov-Maruyama theorem.

For a non-negative Borel function ~ on R, we set

Jt - .

By Itô’s formula, it is easy to show

Jt = e-03BBEP[g(Bt) exp (-03BBt0exp(Bs) dBs - (03B2 + 03BB 2)at - 1 203BB2At)].
Then we obtain

Jt = e-03BBEP[g(Xt)exp(-(03B2 + 03BB 2)t0 exp(Xs)ds) ]

= e-03BBEP[(1 + 403BBAt/4)-(1/2+03B2/03BB)g(2Bt/4 - log(1 + 403BBAt/4))],

where we have used Lemma 3.1 and the self-similarity of Brownian motion for the

second line.

Finally, setting
== + 

we have proved the following:

Proposition 3.3. For a Brownian motion B = {~, ~ ~ 0} and for > 0,"/, /3 ~

R, A > 0, it holds that

(3.2) It(03B3,03B2,03BB) = e-03BBE[(1 + 403BBAt/4)-03B3-1/2-03B2/03BBexp (203B3Bt/4 + 03BBexp(2Bt/4) 1 + 403BBAt/4)].
Now the proof of Theorem 2.1 is easy. We recall Yor’s result (2.3). Then we have

It(03B3, 03B2, 03BB) = e-03BBR dy~0 du (1 + 403BBu)-03B3-1/2-03B2/03BBexp( 203B3y + 03BBe2y 1 + 403BBu)
 1 uexp(-1 + e2y 2u)03B8ey/u(t/4).

Changing the variables (y, u) into (x, v) by

y = 03BBv + x 2 and u = exp(03BBv) - 1 403BB,



402

we obtain

It(03B3,03B2,03BB) = Re03B3xdx~0e-03B2vdv03BB 4 sinh(03BBv/2)
 exp(-03BB(1 + ex) coth(03BBv/2))03B803C6(t/4)

and, consequently, (2.6) by the uniqueness of the Laplace transform.
In order to show the correspondence to an analytic proof of (2.6) given in the next

section, we give another probabilistic proof by calculating the Laplace transform in
time ~ of both hand sides of (3.2) instead of using Yor’s result (2.3). The assertion
of the following proposition is equivalent to that of Theorem 2.1 by virtue of the

uniqueness of Laplace transforms.

We set

G.(~,A)=/ exp(-~)~,/3,A)~, z.>0,
7o ~

and

" 

where (~ is given by (2.5).

Proposition 3.4. For any 03BD > 0, it holds that

(3.3) G03BD(03B3, 03B2, 03BB) = Re03B3y dy ~0 e-03B2v03A803BD(y, v; 03BB) dv.

Proof. We first recall the Lamperti relation (see [20], p.452): there exists a two-

dimensional Bessel process ~ = {~,~ 0} starting from 1 such that

~0.

Then, by (3.2), we obtain

/~ A) - 4e-~ /" 
 E[(1 + 403BBAt)-03B3-1/2-03B2/03BB exp (203B3Bt + 03BB exp(2Bt) 1 + 403BBAt)]

= 4e-03BB ~0(1 + 403BBs)-03B3-/1/2-03B2/03BB ds

xE[(~)~exp(-2~C.+~~)],
where C~ is the inverse function of .s == ~ given by

r - 
(py-
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Note that there exists a complex Brownian motion Z = ~Zt = + 

0} with Zo == 1 and a continuous process ~ _ ~~t, t >_- 0~ with ~o = 0 such that

Zt = Rt t >_ 0.

~ is the total winding of Z about 0. Moreover we recall the following formulae (cf.

Pitman-Yor, [18], [19]): for r, s, a > 0,

E[exp(-103B103A6s); Rs ~ dr ] = E[exp(-1 203B12Cs); Rs ~ dr]

= exp
(-1 + r2 2s)I03B1( r s) rdr s.

Then we obtain

~~ ~) = 4e-~’ + 4as)-~‘-1~2-~~~ -

 
~0 r203B3-1 exp

( 03BBr2 1 + 403BBs
-

1 + r2 2s)I203BD (r s)dr.

Finally, changing the variables from (s, r) into (y, v) by

r = (1 + 403BBs)1/2ey/2 and s = exp(03BBv) - 1 403BB,

we obtain (3.3). D

4. SCHRODINGER OPERATORS WITH MORSE POTENTIALS

For A > 0 and k E R, we consider the Schrodinger operator on L~(R) with

the Morse potential VM03BB,k given by

HM03BB,k = -

1 2 d2 dx2 
+ VM03BB,k, VM03BB,k(x) = 1 203BB2e2x-03BBkex .

For the motivation about the study of this operator and its close relation to the Maass

Laplacians on the Poincare upper half plane which we will study in the next section,

see [11] and the references cited therein.

In this section we first show, by using our result (2.6), an integral representation

(4.2) below of the heat kernel x, y), t > 0, x, y E R, with respect to the Lebesgue

measure of the semigroup generated by Next, after showing that (4.2) is also

obtained by using (2.1) and some results in [11], we give another analytic proof of

(2.6).
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By the Feynman-Kac formula, we have

(4.1) 

~, /) = E[exp f-~~~~ + -.,] 201420142014 °

Using (2.6), we easily obtain the following proposition. It should be remarked that

the right hand side of (4.1) may be regarded as a (double) Laplace transform of the

joint distribution of and (4.2) below is an equivalent assertion to (2.6). .

Proposition 4.1. Let A > 0 and k ~ R. Then, for any t > 0, it holds that

(4.2) qM03BB,k(t, x,y) = ~0 e2ku 1 2 sinh(u)exp(-03BB(ex + ey)coth(u)) 03B803C6(t/4) du,

where 03B8r is the function defined by (2.2) and

.~2Aexp((~+?/)/2)
sinh(u) 

°

Remark 4.1. It is not difficult to show that = holds as 0 for any

N > 0 and, as a consequence, that the integral on the right hand side of (4.2) is

convergent for any A > 0 and k G R.

Remark 4.2. It is easy to show from (4.2) that

(4.3) y) = /" ..~ . + eY) coth(u)) ~(~/4) du,

holds with §’ = 2~A~ + y)/2)/ sinh(u) when A  0.

Next, starting from an explicit formula for the Green function GM03BB,k for which

has been obtained in [11] in two ways, by using the general theory of the Sturm-

Liouville operators and by using the theory of the Bessel diffusions, we show (4.2)
and then (2.6) conversely.

By Proposition 4.1 in [II], we have for y > x and o; > 0

GM03BB,k(x,y;03B12/2) ~ ~0 exp(-1 203B12t)qM03BB,k(t,x,y) dt
(4.4) " "° ~~:~~~~~~~(2~)M~(2A~),
where it should be assumed that Q; > ~ 2014 1/2 when k > 0. and are the

Whittaker functions. Moreover, by the integral representation of the product of the
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Whittaker functions (cf. [7], p. 729), we also have

(4.5)

GM03BB,k(x,y;03B12/2) = 2~0exp(2ku) sinh(u)exp(-03BB(ex + ey) coth(u))I203B1(203BBe(x+y)/2 sinh(u)) du.
Now, recalling the characterization (2.1) of the Hartman-Watson distribution, we

obtain (4.2).

Remark 4.3. In [II], the reference measure has not been mentioned and it has caused

the difference of a constant factor "2" in the expressions of the Green functions.

Formulae (4.4) and (4.5) give them with respect to the Lebesgue measure. Moreover

the condition for a has been dropped in Proposition 4.1 in [11]. (4.4) and (4.5) do

not hold for all a in general when k > 0 because may have negative eigenvalues

which are obtained as poles of the Gamma function on the right hand side of (4.4).

Our result (2.6) is obtained easily from (4.2). Setting ~ = 0 in (4.1) and (4.2), we

have

/" = u, Bt = ~/] y) du

= 2 03BB~0 e2kuE[exp(-1 203BB2At)|at = 2u/03BB, Bt = y] 03C8(2u/03BB, y) du

= ~0exp(2ku) 2sinh(u) exp(-03BB(1 + ey) coth(u)) 03B803C61 (t/4) du

for all k e R, where

~2Aexp(?//2)~ 

sinh(u) 
°

Therefore the uniqueness of the Laplace transform implies (2.6).

Remark 4.4. Since we have shown (2.6) without using Yor’s result (2.3) or (2.4), we

obtain another proof of it by letting A tend to zero in (2.6). Moreover, in the case

where k == 0, it is easy to show (cf. [11]) that

(4.6) ~/; c~/2) = 

holds for a > 0, A > 0 and x  y. (4.6) is also obtained from (4.4) if we recall

== + and = 

By using the integral representation

~(~~(-~-~.(~..-..
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of the product of the modified Bessel functions (cf. [7], p.725) and (2.1), we can

show Yor’s result (2.3) from (4.6) by the explicit inversion of the Laplace transform.

It should be mentioned that Yor’s result (2.3) is closely related to the study of the

winding number of the two-dimensional Brownian motion. For details, see, e.g., Ito-

McKean [12] Chapter 7, Pitman-Yor [19], Yor [21].

5. MAASS LAPLACIAN

In this section, by using our result (4.2) in the framework developed in (11~, we

give an explicit expression of the heat kernels of the semigroups generated by the

Schrodinger operators with constant magnetic fields or the Maass Laplacians on the

Poincare upper half plane. Our result gives a simpler expression than Fay’s original

one (see [6],[11] and also [17]).
We begin with recalling some results in [11]. Letting H2 be the upper half plane

with rectangular coordinates (~, y),

H2 = ~(~~ y); ~ E R, y > 0~,

with the usual Poincare metric ds2 = + dy2), we consider the Schrodinger
operator with magnetic field Hk, k G R, defined by

Hk = 1 2y2(-1~ ~x+k y)
2 

- 1 2y2~2 ~y2.
A trivial modification -2Hk + k2 gives the Maass Laplacian which plays important

roles in several fields of mathematics. For details, see [11] and the references cited

therein.

Let qk (t, z1, z2), t > 0, z1, z2 E H2, be the heat kernel with respect to the Riemannian

volume y-2dxdy of the semigroup generated by Hk. Then it is known that there exists

a function gt ( ~ ) on [0, oo) such that

(5.1) qk(t, z1, z2) == z2)),

where zi = yz) E H2 is identified with zi = xi + -1yi E C as usual, d(zl, z2)
is the hyperbolic distance between zl and z2 and, for w E C with

- ~r  e ~ ~r, wk = 
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Moreover it has been shown in [11] that qk(t, zi, z2) and ~, ~), studied in

the previous section, are related through a one-dimensional Fourier transform in the

following way:

(5.2) qk(t,z1,z2) = e-t/8-k2t/2y1y2 203C0 ~-~e--1(x2-x1)03BBqM03BB,k(t, log y1, log y2) d03BB.

With the help of harmonic analysis on H2, Fay [6] has shown an explicit form of the

Green function for Hk, its spectral decomposition and, as a consequence, an explicit

expression for The Green function is also obtained by taking the Laplace

transform of both hand sides of (5.2) and by using (4.4) or (4.5).
The following gives another simpler expression for qk(t, z2), which, in fact, coin-

cides with the expression of Fay, and completes the story developed in [11] about the

Selberg trace formula on H2 in the framework of stochastic analysis. .

Theorem 5.1. Let cp(b, r), 0 _- r ~ b, be a function defined by

03C6(b,r) = cosh-1( cosh(r/2) cosh(r/2))
.

Then the function gt on the right hand side of (5.1) is given by

~~ .. - d ,(5.3) 9t( ) 
2~t 3~2 r ( cosh b - cosh r 1~2 

~~°

Before proceeding to the proof, we give some remarks on (5.3). By setting k = 0,
we immediately obtain the well known formula for the heat kernel p2 for Ho, the half

of the Laplacian on H2. We refer to Davies [4] for the heat kernels of the semigroups

generated by the Laplacians on the real hyperbolic spaces. Moreover, setting r = 0,

we also easily obtain

qk(t,z,z) = exp(-t/8-k2t/2) (203C0t)3/2 ~0cosh(kb)b exp(-b2/2t) sinh(b/2) db,

which coincides with (3.5) in [11]. In general, we can show that our expression (5.3)
for gt coincides with that of Fay [6] (see [11] for details including some comments on

Fay’s original result). We omit the detailed proof since it only needs easy but lengthy
calculations.

In the proof of (5.3) below, we shall use Gruet’s calculation ([8]) of the heat kernel

for the Laplacian on the three-dimensional hyperbolic space, which is available without

any change. We recall his result for the reader’s convenience. See also Gruet [9] for

more general result.
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Theorem 5.2 (Gruet). . Let AHn be the Laplacian on the hyperbolic space Hn = ~z =

(x, y); x E y > 0~, d _> 2, endowed with the Riemannian metric y-2 (~i i dxi +
dy2 ) . Then the heat kernel pn( t, zl z2) for OH~ /2 with respect to the Riemannian

volume is given by 

pn(t,z1, z2) = exp(-(n - 1)2t/8) 03C0(203C0)n/2t1/2 0393 (n+1 2)
(5.4)

 ~0 e(03C02-b2)/2t sinh(b) sin(03C0b/t) [cosh(b) + cosh(dn(z1,z2))](n+1)/2db,
where dn(z1, z2) is the hyperbolic distance between zl and z2 in Hn.

Gruet has also shown that, from his expression (5.4), we can derive the classical

formulae for p2 = qo mentioned above and p3, for which we know ([4])

(5.5) p3(t,z1,z2) = e-t/2 (203C0t)3/2 d3(z1,z2) sinh(d3(z1,z2)) exp( -d3(z1 ,z2)2 /2t) .

In particular, the right hand side of (5.5) is obtained from (5.4) by a simple residue

calculus. Millson’s formulae are also shown from (5.4) and the explicit forms 

3, 4, ..., are obtained inductively. It should be mentioned that Gruet’s proof of (5.4)

heavily depends on Yor’s result (2.3).
Now we give a proof of (5.3). .

Proof of Theorem 5.1. First of all we note that, by (5.1) and (5.2), we need only
consider the case where x2 = xl. In this case the hyperbolic distance r = d(zl, z2) is

given by

cosh(d(z1,z2)) = y21 + y22 2y1y2
and we have

qk( t, z1, z2) = e-t/8-k2t/2
y1y2 203C0 ~-~qM03BB,k

(t, log y1, log y2) d 03BB.

Next we note that zl, z2) and the function defined by the right hand side of

(5.3) are, as functions in k, analytic on C. The analyticity of is seen from

the probabilistic representation for it (see Section 2 of [11]). Therefore it is sufficient to

show (5.3) when |k|  1/2 by virtue of the uniqueness theorem for analytic functions.

Now we assume that x2 = xl and  1/2. Then it holds that

gt(r) = y1y2 203C0e-t/8-k2t/2~0(qM03BB,k + qM-03BB,k)(t, log y1, log y2) d03BB.
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Moreover, setting ~ = we have by (4.2) and (4.3)

(~ + ~)(~ !og~) = /" ~~~ + ~) ~(t/4) ~

and, therefore,

gt(r) = 2y1y2 03C05/2t1/2e -t/8-k2t/2+203C02/t
 ~0 03BB d03BB ~0 du ~0 d03BE cosh(2ku) (sinh(u))2exp(-03BB(y1 + y2)coth(u))
7o 7o ~0 (smh(~))~

 exp(-203BE2 t - 203BBy1y2 sinh(u) cosh(03BE)) sinh(03BE)sin(403C003BE/t).
Noting that the integral on the right hand side is absolutely convergent since |k|  1/2,
we first carry out the integral in A. Then, after some calculations, we obtain

~) = ~)~V~"~ ~ ~,

where

F(u) = ~0 exp(2(03C02 - 03BE2)/t)sinh(03BE)sin(403C003BE/t) (cosh(r/2)cosh(u) + cosh(03BE))2 d03BE.

Now we use (5.4) and (5.5). Then, setting

(~(r,~) == 

we obtain

F(u) = 403C0(r,u) t sinh((r,u)) exp(-2(r,u)2/t)
and

~ 
4exp(-~/8-~/2) /’~ ~) ~)~)

~~~ ’ (2~)~7o sinner, ~) 
"’

Finally, changing the variable from ~ into ~ by 2(~(r,~) = ~ or, equivalently, ~ =

(~(6,r), we obtain (5.3). D

6. FURTHER APPLICATIONS OF THEOREM 2.1

In this section we apply Theorem 2.1 to the computation of the semigroup of a

hyperbolic drifted diffusion, which appeared naturally in Alili-Dufresne-Yor [2] in

the context of a generalization of the Bougerol identity, and for the distribution of

the asset process in a stochastic volatility model ([10]) in mathematical finance.
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6.1. A hyperbolic drifted diffusion. Let P be the law of the original Brownian

motion B = ~ 0} starting from 0 on the canonical path space C([0, oo); R) and
denote ~ = 5 ~ ~}. We consider the stochastic differential equation

+ (/~ tanh(~) + ~, ~o = ~

for p, v ~ R and denote by the probability law of the unique strong solution

V~={~,~0}. Setting

/~tanh(~) + ,

we have by the Girsanov-Maruyama theorem

.

The following theorem characterizes the law of for a fixed time.

Proposition 6.1. For any t > 0, A > 0, it holds that

]

= e- 2t/2 ~0 dv ~-~ dy exp(-103BBsinh(x)ey + y + -103BB03BDv)
 03BB 4 sinh(03BBv/2)exp (-03BB(ey + 1)coth(03BBv/2)) 03B803C6(t/4).

Proof. We first borrow the following identity in law between the involved processes
from [2] ;

(6.1) 0} + ~0 /" ~), ~ ~ 0},

where = ~ + and = ~ + vs for an auxiliary independent Brownian

motion ~ = {~}. We recall that this result is obtained by applying Ito’s formula and

simplifying the martingale part of the right hand side. Reversing time in the integral
on the right hand side of (6.1), we get the identity

(6.2) + 

for fixed t > 0. The theorem follows by taking the Fourier transform of both hand

sides, using the independence of B and 03B3 and applying Theorem 2.1. D
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Remark 6.1. Since Band, are independent, Dambis-Dubins-Schwarz Theorem (see

[20], p.181) allows us to conclude that, for fixed t,

(6.3) sinh-1 ( sinh(x) + + 

where are defined as At,at with {Bt} replaced by and N stands for a

standard normal variable independent of B. The Cameron-Martin theorem shows that

we need an explicit expression for the probability density of the triplet (At at, Bt) in

order to obtain that for the transition probability density pt’v(x, y) of {Y~’"}. Indeed,

a straightforward calculation shows that

p ,03BDt(x,y) = cosh(y)E[e Bt- 2t/21 203C0Atexp(-1 2At(sinh(y)-03BDat-sinh(x)eBt)2)]

Clearly the difficulty in expressing out y) relies on the explicit inversion of the

Laplace transform figuring in Theorem 2.1.

Remark 6.2. Now we clarify some connections of the present computations with those

in a recent paper by Yor [23]. We assume that ~c  0 and x = 0. In this case, by

the time reversal, we see that the process 0} converges in law to

Jooo which is called a subordinated perpetuity in [23]. The fact that the

distribution of the later random variable is the unique invariant probability measure

for the diffusion process t >_ 0} has been extensively exploited to find out

the explicit formula for the probability density of the subordinated perpetuity. In the

spirit of the previous study (and only for t = oo) the required object is the density of

the couple Jooo which seems to have some connections

with generalized Levy stochastic area formulae. This fact breaks down the hope to

invert explicitly the Laplace transform figuring in Theorem 2.1. .

6.2. The Hull-White model. In this paragraph we consider the Hull-White model

in mathematical finance (see [10], [13]), which serves a model of an asset price process

{St, t >_ 0} with a stochastic volatility {~t, t >__ 0}. Our objective is to obtain an

explicit form (via an elementary integral) of the distribution of St for fixed time t by

applying Theorem 2.1.

The model is described by the following system of stochastic differential equations;

(6.4) dSt St = r dt + 1 - 03C1203C3t dw(1)t + 03C103C3tdw(2)t, d03C3t 03C3t = a dt + b dw(2)t ,


