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RIGIDITY OF SYMMETRIC SPACES

Inkang KIM

Abstract

In this note we survey the rigidity of symmetrie spaces in several view points.
Namely we present the marked length rigidity, the rigidity of a geometrie flow, the
stability of lattices in quaternionic hyperbolic space and some related results.

1. Introduction

In this note, we survey the rigidity of symmetrie spaces in various view points. We
want to look at the symmetrie spaces as Riemannian manifolds and topological spaces,
in terms of dynamics and Lie group theory tied with geometry. For Riemannian and re-
présentation theoretical point of view, we present the marked length rigidity of Zariski
dense subgroups of the isometry groups, for topological point of view, we discuss the
geometrically finite manifolds and the geometrie flows on the manifolds modelled on
the Furstenberg boundary. We also discuss that lattices in quaternionic hyperbolic space
cannot be deformed continuously. Along the way, we discuss the Patterson-Sullivan mea-
sure, non-arithmeticity of non-elementary groups in rank one symmetrie spaces and
some properties of limit sets in the product of rank one symmetrie spaces.

Some results are published and many of them are either submitted or in prépara-
tion.

2. Marked length rigidity

In this section, we announce the following results.

THEOREMI. — Let p \ G -~ X, <f> \ G ^ Y be two Zariski dense représentations
where X and Y are either symmetrie spaces of rank one or their product Ifthey have the
same marked length spectrum, Le.t l(p(g)) = l(<t>(g))forallg € G, thenX = Y andthey
are conjugate.

Math, classification: 51M10.57S.
Key words: symmetrie spaces, marked length rigidity, geometrie flow, déformation of lattices.
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This theorem is proved in [15] and [16]. The idea of the proof is using the follo-
wing lemma together with the Carnot-Caratheodory metric on the geometrie boundary
of rank one symmetrie space.

LEMMA 1. — Let a, b be two hyperbolic isometries in CAT(-l) space X. Let a~, b' be
the repellingfixed points of a and b, a+, b+ the attractingfixed points of a and b. Then

\im en [ , , ]

where [x, y, z, w] dénotes the cross ratio of the four points.

This lemma implies that if two non-elementary représentations have the same mar-
ked length spectrum, then there is a cross-ratio preserving homeomorphism between
the two limit sets. Using the subriemannian structure, namely the Carnot-Caratheodory
metric on the geometrie boundary of rank one symmetrie space, we can extend the map
defined only on the limit set, to the whole ideal boundary, which is an isometry with
respect to the Carnot metric. For the product of rank one spaces, basically we deduce the
problem to each factor, which can be dealt with by the above argument.

The marked length rigidity of higher rank symmetrie spaces has the following form:

THEOREM 2. — Let T\ and Y2 be Zariski dense subgroups in irreducible higher rank
symmetrie spaces X and Y. Ifthey have the same marked length spectrum, then X = Y
and they are conjugate.

This theorem is proved in [12]. The main idea of the proof is using the smallest to-
tally geodesie space Z in X x Y, left invariant under T = {(y, 4>{y))\y €T\,<t> gives the
same marked length spectrum between T\ and T2}. This Z has the slope 1 ifthey have the
same marked length spectrum, and this fact gives an isometry between geometrie boun-
daries of X and Y with respect to the Tits metrics. By the work of Tits [20], this isometry
is realized by an isometry between X and y. Along the proof we used the idea of Benoist
[3].

We want to mention some corollaries deduced from these theorems and lemma.

COROLLARY 1. — Let M be afinite volume locally symmetrie manifold of rank one
and N be a quotient ofCAT(-l) space whose limit set is the whole ideal boundary of the
CAT(-l) space. Ifthey have the same marked length spectrum, then they are isometric.

Proof: Using the result of [4] and lemma 1, the result follows. •

COROLLARY 2. — Let M bea convex cocompact manifold with a metric g\ which is
a quotient of a symmetrie space of non-compact type. Let gz be another symmetrie metric
which makes M convex cocompact. Then ̂ BM{g\tg2) ^ JJ^J ̂ here ItJBM(gitg2) is the
geodesie stretch ofg2 relative to g\ and the Bowen-Margulis measure HBM ofg\. Further-
more thefollowings are equivalent
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2. There is a time preserving conjugacy between Q ( g\ ) and Q ( g2 ) •

3. The two manifolds have the same marked length spectrum.

4. gi and gi are isometric.

In [22] Thurston introduced a non-symmetric Finsier metric K on the Teichmüller
space of the closed surface S, #"(S). It is defined by

jr(g,«-,up{ log (

where rtf is the free homotopy classes of closed loops. He showed that K(g, h) is equal
to the minimum of global Lipschitz constants of homeomorphisms in a given homotopy
class. From this iteasilyfollows that AT(g,fc) ^ Oandtheequalityholdsiffg = fc.Toprove
that K is the minimal Lipschitz constant, he uses the generalization of an earthquake
on a surface, namely the cataclysm. Let &(T) be the space of faithful, discrete, convex
cocompact représentations from Tinto the isometry group of rank one symmetrie space
X of non-compact type. Define the distance K(g, h) as above for g and h in «̂ "(D.

COROLLARY3. — <5(g) = ö{h) andK(gth) = 0 iffg and h are isometric for g and h
in &(D where ö{T) dénotes the critical exponent of the Poincare series of T.

We want to mention the final corollary of this section.

COROLLARY4.— LetY c Gbeanon-elementarygroupinasemisimpleLiegroupG of
non-compact type of rank one. Then the set of translation lengths ofhyperbolic isometries
in T is not contained in any discrete subgroup ofR.

Proof: If the set of translation lengths is contained in roZ, then by the lemma 1, the set
of cross-ratios on the limit set is contained in er°2. This means that 0 is the only accu-
mulation point of cross-ratios on the limit set. Using the structure of the ideal boundary
of rank one symmetrie space, which is the one point compactification of a two step nil-
potent group (called a generalized Heisenberg group), and using the action of isometries
together with the explicit Cygan norm on the generalized Heisenberg group, one can de-
duce a contradiction. For the detailed proof, see [ 13]. •

3. Geometrical finiteness and Geometrie flow

The ( G, X ) structure for the manifold M is, briefly speaking, a set of coordinate
charts {</>,•: Ui, — X} such that transition functions are in the group G. A geometrie
flow on Af is a flow whose one parameter group preserves this given geometrie structure.
In this section, we concern about the manifold modelled on the Furstenberg boundary
of symmetrie space. In this case G is a semisimple Lie group of non-compact type and X
is the Furstenberg boundary of the symmetrie space. Mainly we are concerned about the
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geometrie boundary of a rank one symmetrie space, since the extended action of isome-
tries on the Furstenberg boundary of higher rank symmetrie spaces are not satisfactory.
The theorem we want to announce in this section is:

THEOREM 3. — A non-singular geometrie flow on the s'mooth manifold which is a
rational homology sphère and is modeled on the Furstenberg houndary of a symmetrie
space of non-compact type, under the suitable assumptions, hos a closed orbit.

This is a special version of the Seifert conjecture saying that a smooth flow has a
closed orbit or a fixed point. For the rank one case, the Furstenberg boundary and the
geometrie boundary coincide. Further we do not need any assumption for rank one case.
For the details, see [17]. The theorem is proved in [10] for the rank one case except for the
Cayley plane in a similar fashion.

We say that M is a complete (G,X)-manifold if dev : M - X is a covering map.
Note that if M is a closed (G, X)-manifold and G is a Lie group acting transitively on X
with compact stabilizer Gx for some xt then M is complete. The reason is that by pulling
back the G-invariant metric on X by dev, we get a geodesically complete metric on M,
so a local isometry from a complete Riemannian manifold is always a covering map. See
[23]. This is the starting point of our argument in proving the main theorems.

The main ingrediënt of the proof is the following lemma:

LEMMA 2. — Let{<pt] be a closed non-compact one-parameter group of
^iso(H-n) (Piiti (M) ) ) where r€ dénotes the centralizer. Then either one of the following is
true:

(1) M is (G,X)-equivalent to X.

(2) <f>t fixes a unique fixed point {oo} withdev~l(oo) = 0 .

(3)<t>t fixes exactly twopoints {[0t0], oo} tf/r/zdev~1({[0,0]> oo}) = 0 .
Furthermore in cases (2) and (3), Aut(M) is compact.

For the proof, see [17] and [10].

This theorem somehow reflects the rigidity of symmetrie spaces at infinity. The
other theorem we want to present here is about the topological picture of non-compact
locally symmetrie manifolds.

In hyperbolic 3-manifold theory, a geometrically finite manifold plays a very impor-
tant role in many different aspects. For example it is homeomorphic to a 3-manifold with
boundary and with finitely many ends. This property is the réminiscence of the Scott's
core in 3-manifold topology. Apart from this topological nature, a geometrically finite
manifold has a geometrie simpleness such as the thick part of the convex core has finite
volume and is compact. From the dynamical point of view, a geometrically finite group
has a limit set consisting of parabolic fixed points and conical limit points. Thurston [24]
also showed that a geometrically finite manifold has a finite sided fondamental domain
in the universal cover.
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In [5] Bowditch proved four equivalent définitions of geometrical finiteness for ne-
gatively curved Hadamard manifolds. In [18], he basically showed that the characteriza-
tion of geometrical finiteness in negatively curved Hadamard manifolds persists in géné-
ral non-positively curved symmetrie spaces except for the nature of the parabolic fixed
points. But while writing this he realized that such a charactërization seems meaningful
only for the product of rank one symmetrie spaces. In this section we give examples of
geometrically finite manifolds by analizing the limit set.

In [18], he showed that the following définitions are equivalent for locally symmetrie
manifolds.

DÉFINITION 1. — T c Iso(X) is geometrically finite ifX/T is homeomorphic to the
interior of a topological manifoldM(T) such that M{Y) hos a finite number ofends and
M{Y) with the ends truncated off is compact. Furthermore all the corresponding ends in
X /r are union of parabolic cusps, Le., the end component of the thin part (X /Y) {Ot€) is the
union ofX€ /Y€ 's such that

2. r£ contains a parabolic isometry and d(xt y(x)) ^ e for all x € X€andforsome
parabolic isometry y e T€.FurthermoreT€ is a maximal parabolic subgroup o/T.

DEFINITION2. — T e Iso(X) is geometrically finite iffore € (0,€(n)), wheree(n)
is theMargulis constant, C(T) n (M[€t00) - {cuspends}) is compact whereM = X/Yand
C(Y) is the convex core ofT.

DÉFINITION 3. — T e Iso(X) is geometrically finite ifNnC(Y) hos finite volume for
someq > 0 whereNnC(T) isar]-neighborhoodofC{T).

Now we want to give examples of geometrically finite manifolds of higher rank
which are not lattices. Let Z be a product of rank one symmetrie spaces X and Y and
T c Iso(X) x Iso(y ) be a non-elementary group. The geometrie boundary of Z can be
identified with dX x dY x [0, oo] where [0f oo] dénotes the direction associated with the
Riemannian product.

The following theorem is proved in [14].

THEOREM4. — LetY c Iso(X) x Iso(y) bea non-elementary group. Then thelimit
set A of Y isA-FxP where F is a projection of A ontodX x dYt andP a projection on
IR. Furthermore F is a minimal closed set under Y and P = I is an interval where I is the
closure of the set of ratios {^ \ ( a, & ) e Y].

Let Y\ c Iso(X) and T2 C Iso(7) be geometrically finite discrete groups in X and
Y. Then Y = Y\ x Y2 has the limit set Ari x Ar2 x P. Since T is a product, obviously P
contains 0 and oo, which implies that P = [0, oo]. Let C(Y) be the minimal convex set
in Z containing the limit set Ar, x Ar2 x [0, oo]. We want to show that C(D is equal to
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x C(T2). Obviously the ideal boundary of C(Ti ) x C{T2) contains ATl x Ar2 x [0, oo].
Conversely, let/i c C(T\)J2 c C(T2) be biinfinite geodesics whose end points are limit
points. Since the ideal boundary of C(D contains {^(±00)} x {/2(±°°)} x [0,00], C(D
should contain h x l2. Since this is true for any pairs of such biinfinite geodesics, C(T)
shouldcontainC(ri) x C(T2).

ThenC(D/r= C(Ti)/Ti x C(r2)/r2, which is of finite volume since each factor is. By
définition 3 of geometrical finiteness, Tis geometrically finite.

4. Rigidity of quaternionic hyperbolic space and geometry of
quaternionic Kàhler manifolds

In this section we present some results related to quaternionic Kàhler manifolds.
First we want to present the rigidity of lattices in quaternionic hyperbolic space.

In [21] Toledo proved that if the intégral, over the closed Riemann surface S, of the
pull back of the Kahler form on complex hyperbolic manifold M by the homotopy équi-
valence map ƒ between S and M is equal to ±2TT-X(S). then the image of S under ƒ lies
on the quotient of complex geodesie. This is the special case of the conjecture of Gold-
man and Milson in [8]. They conjectured that if Tis a cocompact group in SU(n, 1 ) and if
p e Hom(r, SU(n + kt 1)) satisfies/H„/rp*tu" = Vol(H£/r), where to is a Kàhler form

on the complex hyperbolic space H^+k
t then p is Fuchsian i.e., p is a faithful discrete

torsion free représentation stabilizing a totally geodesie Hg in H£+k. The conjecture is
settled by Corlette in [7].

In this section we use the Toledo type invariant in quaternionic hyperbolic space
in a similar fashion as in complex hyperbolic space and prove that Goldman and Milson
conjecture holds for n=l, i.e., the représentation of real hyperbolic four manifold into a
quaternionic hyperbolic space.

We use the canonical quaternionic Kàhler 4-form to compute the Toledo type inva-
riant. The theorem we want to present is:

THEOREM 5. — For any uniform latticeY c PSp(n,l), and any dimension m^ n^
1, there is no quasifuchsian déformation ofits inclusionï c PSp(n,l) C PSp(m,l).

This theorem is proved in [2]. When n = 2, it is a straighforward corollary of Corlette's
superrigidity. The most difficult case is when n = 1.

Let M be a real hyperbolic 4-manifoId, and p : n\ (M) — PSp(n, 1) be a représen-
tation. Let Xp be the associated flat H$-bundie and s a section from M to Xp. This section
s defines a p-equivariant map ƒ : H% — H$. Since its pull back form ƒ *o> is TTI(M)-

invariant, it descends to a four form ƒ *co (with the same notation) on the 4-manifold
M. We define the character of the représentation p as:

f f*LO.
M
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This is independent of the choice of a section s since Hfî is contractible. Furthermore the
flat bundie Xp is completely determined by the représentation p. By thinking of Sp( n, 1 )
as a subset in 0(4 rc, 4), p is a point in an algebraic variety. Then it is a Standard fact that
two flat bundies determined by représentations in the same component of the représen-
tation variety are bundie isomorphic. Therefore the character c(p) is a constant function
on each component of the représentation variety.

We can define /*eu as the following straight 4-cochain. Let x = (xi, * • • ,x$) be
ordered distinct five points in HgJ u dH$. Let 1\2 c H£ be a unique W-line through the
points xi and x2t and U : H^ ^ Zi2 its orthogonal projection. We dénote by A(Il(x))
the geodesie simplex in I12 = H£ with vertices IKx/), and consider a straight geodesie
simplex A (x) c üjfl w** vertices x, inductively defined as follows (see [9] section 1.2).
For a given / ^ lwe define an /-dimensional simplex with ordered vertices Xi, • • • , x/+i
as the geodesie cône from x\ over (/ - 1)-dimensional straight simplex spanned by the
first l vertices x\, • • • , x/. Then

/
./AU)

o) = ƒ œ.

A crucial lemma to prove above theorem is:

LEMMA 3. — Let M = H^/T be a closed oriented real hyperbolic 4-manifold,
7T\{M) = T c Iso+HR, and p : T — PSp(n,l) be a représentation of its fundamen-
talgroup with character c(p), \c(p)\ = | f*œ([M])\ = Vol(M). ThenP(TT\(M)) leaves
invariant an H-line in H$-

Using this lemma and the fact that the character is constant on each component of the
représentation variety, the theorem follows.

Quaternionic hyperbolic space is quaternionic Kàhler since its isotropy group is
Sp(n)Spd) = Sp(n) xl2 Sp(l).Wejust want to mention the following theorem which
seems to be irrelevant to the symmetrie space, none the less it seems that it might prove
to be useful to study quaternionic hyperbolic space.

Let M be a quaternionic Kàhler manifold, i.e., the linear holonomy group is in
Sp(n)Spd). Let P dénote the principal Sp(n)Sp(l) bundie of M. Let £, H dénote the
Standard complex représentations of Sp(n),Sp{l) on C2",C2 respectively. Note hère
that Sp(n) acts on the left and Sp(l) on the right. Also there are invariant skew forms
cotf € A 2 H * , 6 Ü £ € A2£*, for example a)//((a, b), (c, d)) = ad- fcc and similar for o>£.
Then H and H* can be identified by h — to#(-, h). A Standard basis of H is a unitary
basis of the form {h, h] such that COH ( h, h) = 1. Let H be a locally defined vector bundie
over M defined by

where P is a lifting of P to a principal Sp(n) x Sp(l) bundie which is locally defined
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over M.

DÉFINITION 4. —

SpinM(n) = (Spin(n) x Sp(l))/Z2.

It is said that X has a Spin" structure if there is a principal SpinH(n) bundie over Pso(n)-
From the exact séquence of the Sheaf cohomology

0 - Z2 - SpinM(n) - SO(n) x SO(3) - 1

(<x,P) e SpinM(«) - (ft, 0) e SO(n) x SO(3)

0 - Hl{X,22) - Hl(X,SpmH(n)) - Hl(X, SO{n)) e Hl(X, SO(3))

- H2{X,12)--' ,

the existence of Spin1"1 structure is equivalent to the existence of a SO(3) bundie I such
that

= co2(I)(mod2).

But since X is a quaternionic Kàhler manifold, S2H is a globally defined SO(3) bundie
whose Z2 réduction CÜ2(S2H) of its first chern class is equal to œ2(X) for n odd [19]. So
every quaternionic Kàhler manifold has a canonical SpinH structure for n odd, specially
every real 4-dimensiona] Riemannian manifold has a canonical SpinM structure since
Sp(l) - Sp(l) = SO(4).From

0 - Z2 - Spil) - SO(3) - 0

the lift of a SO(3) bundie is a Sp(l ) bundie. The canonical lift of S2H is H. The following
theorem is proved in [11].

THEOREM 6. — LetX be a symplectic 4-manifold with è2*1" ^ 2. Then the Seiberg-
Witten invariant for the canonical characteristic Sp(l) bundie H is J.

5. Patterson-Sullivan theory on the product of Hadamard manifolds

In this section we want to present theorems related to the Patterson-Sullivan theory.
All the theorems mentioned here hold not just for the product of rank one symmetrie
spaces but also for the product of Hadamard manifolds with curvature< -a2 < 0.

This subject is intensively studied by 11], [6J. The following theorem is proved in [14].

THEOREM 7. — Letl\ ,T2be convex cocompact groups in Hadamard manifolds X and
Y with curvatures boundedfrom above by-a2. Then the Patterson-Sullivan measure is
supported on F x 7^(ri,r2) where 1^ is the geodesie stretch with respect to the Bowen-
Margulis measure i*.
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We also mention that the shadow lemma and the counting lemma hold as in sym-
metrie spaces.

THEOREM 8. — Let Tbea irreducible discrete subgroup of lso(X) x Iso(y ) and er a
{&,6)-densityondX. Then there exists C > 0 such that for all K > C,

COROLLARY 5. — Let Tbea discrete irreducible group in Iso(X) x Iso(K) where X
and Y are pinched Hadamard manifolds. Ifa isa(fit 0)-densityfor6 * 0, oo, then \TXQ n
B6(XQ, l)\ ^ Ce^l forsomeconstante > 0.
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