ROBERT BROOKS

Typical surfaces and random graphs

<http://www.numdam.org/item?id=TSG_1998-1999__17__99_0>
In this talk, we describe an approach to the problem: What does a typical Riemann surface of large genus look like geometrically? In large part, this is joint work with Eran Makover.

As various parts of this program have been described elsewhere ([PS], [SGB], [LFE], [RCRS]), we will take the present occasion to describe some of the motivating ideas behind the program. See [FERS] for an announcement of results in this direction.

A central problem, which we have attacked from a number of points of view, is to come to some geometrical understanding of the following theorem, due to Selberg:

Theorem 1 ([Sel]). Let \(\Gamma = \text{PSL}(2, \mathbb{Z}) \), and let

\[
\Gamma_k = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{k} \right\}.
\]

Then the first eigenvalue \(\lambda_1(\mathbb{H}^2/\Gamma_k) \) satisfies

\[
\lambda_1(\mathbb{H}^2/\Gamma_k) \geq 3/16.
\]

The number 3/16 has been improved by Luo, Rudnick, and Sarnak [LRS], but we will not be interested here in precise constants. Rather, we will say that \(\lambda_1 \) of a Riemann surface is large if it is bounded below by a positive constant independent of the genus.

A natural question arising from Selberg's Theorem is whether the phenomenon of large first eigenvalue is something which is special for arithmetically defined surfaces, or whether it is a property enjoyed by "typical" Riemann surfaces, of which such arithmetically defined surfaces just happen to be good examples.

Math. classification: 58G99.

*Partially supported by grants from the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, the Fund for the Promotion of Research at the Technion, and the Steiner Research Fund.
To understand this question, we may perform the following thought experiment: let R_g be a Riemann surface whose geometric description is like our usual picture of a Riemann surface:

![Figure 1: The surface R_g](image)

We have drawn on R_g a curve which divides it into two pieces.

Instead of trying to visualize the first eigenvalue, we instead consider the Cheeger constant

$$h(R) = \inf_{C} \frac{\text{length}(C)}{\min(\text{area}(A), \text{area}(B))},$$

where C is a (possibly disconnected) curve which splits R into two parts A and B.

It is then easy to see that as g gets large, the Cheeger constant $h(R_g)$ tends to 0, as the surface is divided into two pieces of equal size by a curve such as the curve in Figure 1, whose length is fixed independent of the genus.

Now let us divide the surface in half, as in Figure 2 below, and then glue the legs of the top half randomly to legs in the bottom half. It is easy to convince oneself that for a suitably random gluing of the legs, there is no longer any convenient way to divide the surface in half by a relatively short curve.

One would like to believe that a typical Riemann surface looks more like one of the random gluings than like R_g itself. The problem in making this precise is two-fold:

1. First of all, it would seem to be difficult to describe processes such as the random gluings in terms of, say, Fenchel-Nielsen coordinates. In general, it would seem to be difficult to use Fenchel-Nielsen coordinates to control the spectral geometry of a surface of large genus.
(ii) Secondly, the gluing process described above seems to rest on a combinatorial structure which would seem to be absent in a typical Riemann surface. How can one describe a typical Riemann surface in a way which reflects a combinatorial structure analogous to this?

Both of these difficulties are met by the following construction: let G be a finite trivalent graph, and \mathcal{O} an orientation of G—i.e., for each vertex v of G, \mathcal{O} gives a cyclic ordering of the vertices emanating from v.

We may then associate to the pair (G, \mathcal{O}) two Riemann surfaces $S^\mathcal{O}(G, \mathcal{O})$ and $S^\mathcal{C}(G, \mathcal{O})$, as follows: $S^\mathcal{O}(G, \mathcal{O})$ is constructed from G by pasting one hyperbolic ideal triangle for each vertex, and gluing triangles together according to the graph and orientation, see [TS] for details. $S^\mathcal{C}(G, \mathcal{O})$ is then a finite-area Riemann surface, whose geometry is well-controlled by the pair (G, \mathcal{O}). $S^\mathcal{C}(G, \mathcal{O})$ is then the conformal compactification of $S^\mathcal{O}(G, \mathcal{O})$.

The two problems mentioned above can be rephrased in the following way:

Question 1. To what extent can we transfer the good geometric control that we have on the surfaces $S^\mathcal{O}(G, \mathcal{O})$ to the surfaces $S^\mathcal{C}(G, \mathcal{O})$?

Question 2. To what extent are the surfaces $S^\mathcal{C}(G, \mathcal{O})$ typical Riemann surfaces?

Question 2 is answered by the following theorem, which is an easy consequence of the Belyi Theorem [Be]:

Theorem 2. If S is any compact Riemann surface, then for any ε, there is a surface of the form $S^\mathcal{C}(G, \mathcal{O})$ is ε-close to S.

Figure 2: A random gluing
Here, "\(\varepsilon \)-close" may be taken in any convenient metric on moduli space, for instance the Teichmüller metric. Thus, the surfaces \(S^C(G, \mathcal{O}) \) are a dense set of surfaces in the moduli space of all surfaces.

The answer to Question 1 is somewhat more complicated. It is not hard to see that the surfaces \(S^O(G, \mathcal{O}) \) and \(S^C(G, \mathcal{O}) \) might be quite different geometrically. For instance, \(S^O(G, \mathcal{O}) \) always carries a complete hyperbolic metric, but \(S^C(G, \mathcal{O}) \) might be a sphere. However, the theorem of [PS] guarantees that this cannot happen when the cusps are large:

Theorem 3 ([PS]). — For any \(\varepsilon \), there exists an \(L \) with the following property: if \(S^O \) is a finite-area Riemann surface, all of whose cusps have length \(\geq L \), then outside of cusp neighborhoods, depending only on \(L \), the hyperbolic metrics \(ds^2_O \) on \(S^O \) and \(ds^2_C \) on its conformal compactification \(S^C \) satisfy:

\[
\frac{1}{1 + \varepsilon} \leq ds^2_C \leq (1 + \varepsilon) ds^2_O.
\]

The proof is an application of the Ahlfors-Schwarz Lemma [A], together with playing with differential inequalities.

When the condition of large cusps is satisfied, Theorem 3 can be used to show that the geometric control one has over \(S^O(G, \mathcal{O}) \) transfers to control over \(S^C(G, \mathcal{O}) \). Furthermore, the large cusps condition has a simple graph-theoretic interpretation which is easily studied.

In [SGB] and [RCRS], we use the Bollobas model of random regular graphs [Bo1], [Bo2] to study the large cusps condition. Let \(\mathcal{G}_k \) denote the finite set of 3-regular graphs on \(2k \) vertices, and \(\mathcal{G}_k^* \) the finite set of oriented 3-regular graphs on \(2k \) vertices. Then:

Theorem 4 ([SGB]). — With probability \(\to 1 \) as \(k \to \infty \), a graph selected randomly from \(\mathcal{G}_k \) carries an orientation \(\mathcal{O} \) such that all the cusps of \(S^O(G, \mathcal{O}) \) are large.

Theorem 5 ([RCRS]). — There is a positive constant \(C_1 \) independent of \(k \) such that, for a pair \((G, \mathcal{O}) \) randomly chosen from \(\mathcal{G}_k^* \), \(S^O(G, \mathcal{O}) \) has large cusps with probability at least \(C_1 \).

Theorems 4 and 5 can be used to construct compact surfaces which enjoy properties enjoyed by random 3-regular graphs. In particular, Theorem 5 shows that there is a constants \(C_2 \) such that a randomly chosen surface \(S^C(G, \mathcal{O}) \) satisfies

\[
\lambda_1(S^C(G, \mathcal{O})) \geq C_2
\]

with probability at least \(C_1 \).
REFERENCES

Robert BROOKS
Department of Mathematics
Technion - Israel Institute of Technology
HAIFA 32000 (Israel)