Reduced power operations in motivic cohomology
Publications Mathématiques de l'IHÉS, Volume 98 (2003), pp. 1-57.
@article{PMIHES_2003__98__1_0,
     author = {Voevodsky, Vladimir},
     title = {Reduced power operations in motivic cohomology},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--57},
     publisher = {Springer},
     volume = {98},
     year = {2003},
     doi = {10.1007/s10240-003-0009-z},
     mrnumber = {2031198},
     zbl = {1057.14027},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-003-0009-z/}
}
TY  - JOUR
AU  - Voevodsky, Vladimir
TI  - Reduced power operations in motivic cohomology
JO  - Publications Mathématiques de l'IHÉS
PY  - 2003
SP  - 1
EP  - 57
VL  - 98
PB  - Springer
UR  - http://archive.numdam.org/articles/10.1007/s10240-003-0009-z/
DO  - 10.1007/s10240-003-0009-z
LA  - en
ID  - PMIHES_2003__98__1_0
ER  - 
%0 Journal Article
%A Voevodsky, Vladimir
%T Reduced power operations in motivic cohomology
%J Publications Mathématiques de l'IHÉS
%D 2003
%P 1-57
%V 98
%I Springer
%U http://archive.numdam.org/articles/10.1007/s10240-003-0009-z/
%R 10.1007/s10240-003-0009-z
%G en
%F PMIHES_2003__98__1_0
Voevodsky, Vladimir. Reduced power operations in motivic cohomology. Publications Mathématiques de l'IHÉS, Volume 98 (2003), pp. 1-57. doi : 10.1007/s10240-003-0009-z. http://archive.numdam.org/articles/10.1007/s10240-003-0009-z/

1. S. Bloch, The moving lemma for higher Chow groups, J. Algebr. Geom., 3(3) (1994), 537-568. | MR | Zbl

2. J. M. Boardman, The eightfold way to BP-operations, In Current trends in algebraic topology, pp. 187-226. Providence: AMS/CMS, 1982. | MR | Zbl

3. P. May, A general algberaic approach to Steenrod operations, In The Steenrod algebra and its applications, volume 168 of Lecture Notes in Math., pp. 153-231, Springer, 1970. | Zbl

4. V. Voevodsky, C. Mazza, and C. Weibel, Lectures on motivic cohomology, I, www.math.ias.edu/∼vladimir/seminar.html, 2001.

5. J. Milnor, The Steenrod algebra and its dual, Annals of Math., 67(1) (1958), 150-171. | MR | Zbl

6. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318-344. | MR | Zbl

7. F. Morel and V. Voevodsky, A 1-homotopy theory of schemes, Publ. Math. IHES, 90 (1999), 45-143. | Numdam | MR | Zbl

8. N. E. Steenrod and D. B. Epstein, Cohomology operations, Princeton: Princeton Univ. Press, 1962. | MR | Zbl

9. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, In The arithmetic and geometry of algebraic cycles, pp. 117-189, Kluwer, 2000. | MR | Zbl

10. V. Voevodsky, The Milnor Conjecture, www.math.uiuc.edu/K-theory/170, 1996.

11. V. Voevodsky, Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 188-238, Princeton: Princeton Univ. Press, 2000. | MR | Zbl

12. V. Voevodsky, Lectures on motivic cohomology 2000/2001 (written by P. Deligne), www.math.ias.edu/∼vladimir/rear.html, 2000/2001.

13. V. Voevodsky, Cancellation theorem, www.math.uiuc.edu/K-theory/541, 2002.

14. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 351-355. | MR | Zbl

15. V. Voevodsky, Motivic cohomology with Z/2-coefficients, Publ. Math. IHES (this volume), 2003. | Numdam | MR | Zbl

16. V. Voevodsky, E. M. Friedlander, and A. Suslin, Cycles, transfers and motivic homology theories, Princeton: Princeton University Press, 2000. | MR | Zbl

Cited by Sources: