Tameness on the boundary and Ahlfors' measure conjecture
Publications Mathématiques de l'IHÉS, Volume 98 (2003), pp. 145-166.

Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit Γ of geometrically finite kleinian groups, the limit set of Γ is either of Lebesgue measure zero or all of 𝐂 ^. Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.

@article{PMIHES_2003__98__145_0,
     author = {Brock, Jeffrey and Bromberg, Kenneth and Evans, Richard and Souto, Juan},
     title = {Tameness on the boundary and {Ahlfors'} measure conjecture},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {145--166},
     publisher = {Springer},
     volume = {98},
     year = {2003},
     doi = {10.1007/s10240-003-0018-y},
     zbl = {1060.30054},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-003-0018-y/}
}
TY  - JOUR
AU  - Brock, Jeffrey
AU  - Bromberg, Kenneth
AU  - Evans, Richard
AU  - Souto, Juan
TI  - Tameness on the boundary and Ahlfors' measure conjecture
JO  - Publications Mathématiques de l'IHÉS
PY  - 2003
SP  - 145
EP  - 166
VL  - 98
PB  - Springer
UR  - http://archive.numdam.org/articles/10.1007/s10240-003-0018-y/
DO  - 10.1007/s10240-003-0018-y
LA  - en
ID  - PMIHES_2003__98__145_0
ER  - 
%0 Journal Article
%A Brock, Jeffrey
%A Bromberg, Kenneth
%A Evans, Richard
%A Souto, Juan
%T Tameness on the boundary and Ahlfors' measure conjecture
%J Publications Mathématiques de l'IHÉS
%D 2003
%P 145-166
%V 98
%I Springer
%U http://archive.numdam.org/articles/10.1007/s10240-003-0018-y/
%R 10.1007/s10240-003-0018-y
%G en
%F PMIHES_2003__98__145_0
Brock, Jeffrey; Bromberg, Kenneth; Evans, Richard; Souto, Juan. Tameness on the boundary and Ahlfors' measure conjecture. Publications Mathématiques de l'IHÉS, Volume 98 (2003), pp. 145-166. doi : 10.1007/s10240-003-0018-y. http://archive.numdam.org/articles/10.1007/s10240-003-0018-y/

1. W. Abikoff, Degenerating families of Riemann surfaces, Ann. Math., 105 (1977), 29-44. | MR | Zbl

2. L. Ahlfors, Finitely generated Kleinian groups, Am. J. Math., 86 (1964), 413-429. | MR | Zbl

3. L. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Natl. Acad. Sci. USA, 55 (1966), 251-254. | MR | Zbl

4. J. Anderson and R. Canary, Cores of hyperbolic 3-manifolds and limits of Kleinian groups, Am. J. Math., 118 (1996), 745-779. | MR | Zbl

5. J. Anderson and R. Canary, Cores of hyperbolic 3-manifolds and limits of Kleinian groups II, J. Lond. Math. Soc., 61 (2000), 489-505. | MR | Zbl

6. R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, 1992. | MR | Zbl

7. F. Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. Éc. Norm. Supér., 16 (1983), 237-270. | Numdam | MR | Zbl

8. F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. Math., 124 (1986), 71-158. | MR | Zbl

9. F. Bonahon and J. P. Otal, Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., 20 (1988), 255-261. | MR | Zbl

10. J. Brock, Iteration of mapping classes and limits of hyperbolic 3-manifolds, Invent. Math., 143 (2001), 523-570. | MR | Zbl

11. J. Brock and K. Bromberg, Cone Manifolds and the Density Conjecture, To appear in the proceedings of the Warwick conference ‘Kleinian groups and hyperbolic 3-manifolds,' arXiv:mathGT/0210484 (2002). | Zbl

12. J. Brock and K. Bromberg, On the density of geometrically finite Kleinian groups, Accepted to Acta Math., arXiv:mathGT/0212189 (2002). | MR | Zbl

13. K. Bromberg, Hyperbolic Dehn surgery on geometrically infinite 3-manifolds, Preprint (2000).

14. K. Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, To appear, Geom. Dedicata, arXiv:mathGT/0009149 (2000). | MR | Zbl

15. K. Bromberg, Hyperbolic cone manifolds, short geodesics, and Schwarzian derivatives, Preprint, arXiv:mathGT/0211401 (2002). | MR | Zbl

16. K. Bromberg, Projective structures with degenerate holonomy and the Bers density conjecture, Preprint, arXiv:mathGT/0211402 (2002). | MR

17. R. Brooks and J. P. Matelski, Collars for Kleinian Groups, Duke Math. J., 49 (1982), 163-182. | MR | Zbl

18. R. D. Canary, Ends of hyperbolic 3-manifolds, J. Am. Math. Soc., 6 (1993), 1-35. | MR | Zbl

19. R. D. Canary, Geometrically tame hyperbolic 3-manifolds, In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Symp. Pure Math., pp. 99-109. Am. Math. Soc., 1993. | MR | Zbl

20. R. D. Canary, D. B. A. Epstein and P. Green, Notes on notes of Thurston. In Analytical and Geometric Aspects of Hyperbolic Space, pp. 3-92. Cambridge University Press, 1987. | MR | Zbl

21. R. D. Canary and Y. N. Minsky, On limits of tame hyperbolic 3-manifolds, J. Differ. Geom., 43 (1996), 1-41. | MR | Zbl

22. C. J. Earle and A. Marden, Geometric complex coordinates for Teichmüller space, In preparation.

23. R. Evans, Deformation spaces of hyperbolic 3-manifolds: strong convergence and tameness, Ph.D. Thesis, Unversity of Michigan (2000).

24. R. Evans. Tameness persists in weakly type-preserving strong limits, Preprint. | MR | Zbl

25. C. Hodgson and S. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differ. Geom., 48 (1998), 1-59. | MR | Zbl

26. C. Hodgson and S. Kerckhoff, Universal bounds for hyperbolic Dehn surgery, Preprint, arXiv:math.GT/0204345 (2002). | MR | Zbl

27. C. Hodgson and S. Kerckhoff, The shape of hyperbolic Dehn surgery space, In preparation (2002).

28. S. Kerckhoff and W. Thurston, Non-continuity of the action of the modular group at Bers' boundary of Teichmüller space, Invent. Math., 100 (1990), 25-48. | Zbl

29. R. Kulkarni and P. Shalen, On Ahlfors' finiteness theorem, Adv. Math., 76 (1989), 155-169. | Zbl

30. A. Marden, The geometry of finitely generated kleinian groups, Ann. Math., 99 (1974), 383-462. | MR | Zbl

31. A. Marden, Geometrically finite Kleinian groups and their deformation spaces, In Discrete groups and automorphic functions, Academic Press (1977), pp. 259-293. Academic Press, 1977. | MR

32. B. Maskit, On boundaries of Teichmüller spaces and on kleinian groups: II, Ann. Math., 91 (1970), 607-639. | MR | Zbl

33. B. Maskit, Kleinian Groups, Springer-Verlag, 1988. | MR | Zbl

34. D. Mccullough, Compact submanifolds of 3-manifolds with boundary, Quart. J. Math. Oxf., 37 (1986), 299-307. | MR | Zbl

35. C. Mcmullen, The classification of conformal dynamical systems, In Current Developments in Mathematics, 1995, pp. 323-360. International Press, 1995. | MR | Zbl

36. C. Mcmullen, Renormalization and 3-Manifolds Which Fiber Over the Circle, Annals of Math Studies 142, Princeton University Press, 1996. | MR | Zbl

37. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton University Press, 1972. | Zbl

38. K. Ohshika, Kleinian groups which are limits of geometrically finite groups, Preprint. | Zbl

39. P. Scott, Compact submanifolds of 3-manifolds, J. Lond. Math. Soc., (2) 7 (1973), 246-250. | MR | Zbl

40. D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Annals of Math. Studies 97, Princeton, 1981. | MR | Zbl

41. D. Sullivan, Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math., 155 (1985), 243-260. | MR | Zbl

42. W. P. Thurston, Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, 1979.

43. W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., 6 (1982), 357-381. | MR | Zbl

44. W. P. Thurston, Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds, Ann. Math., 124 (1986), 203-246. | MR | Zbl

45. W. P. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle, Preprint, arXiv:math.GT/9801045 (1986). | MR

Cited by Sources: