The Hochschild cohomology of a closed manifold
Publications Mathématiques de l'IHÉS, Tome 99 (2004), pp. 235-252.

Let M be a closed orientable manifold of dimension d and 𝒞 * (M) be the usual cochain algebra on M with coefficients in a field k. The Hochschild cohomology of M, HH * (𝒞 * (M);𝒞 * (M)) is a graded commutative and associative algebra. The augmentation map ε:𝒞 * (M)𝑘 induces a morphism of algebras I:HH * (𝒞 * (M);𝒞 * (M))HH * (𝒞 * (M);𝑘). In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of HH * (𝒞 * (M);𝑘), which is in general quite small. The algebra HH * (𝒞 * (M);𝒞 * (M)) is expected to be isomorphic to the loop homology constructed by Chas and Sullivan. Thus our results would be translated in terms of string homology.

@article{PMIHES_2004__99__235_0,
     author = {Felix, Yves and Thomas, Jean-Claude and Vigu\'e-Poirrier, Micheline},
     title = {The {Hochschild} cohomology of a closed manifold},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {235--252},
     publisher = {Springer},
     volume = {99},
     year = {2004},
     doi = {10.1007/s10240-004-0021-y},
     mrnumber = {2075886},
     zbl = {1060.57019},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-004-0021-y/}
}
TY  - JOUR
AU  - Felix, Yves
AU  - Thomas, Jean-Claude
AU  - Vigué-Poirrier, Micheline
TI  - The Hochschild cohomology of a closed manifold
JO  - Publications Mathématiques de l'IHÉS
PY  - 2004
SP  - 235
EP  - 252
VL  - 99
PB  - Springer
UR  - http://archive.numdam.org/articles/10.1007/s10240-004-0021-y/
DO  - 10.1007/s10240-004-0021-y
LA  - en
ID  - PMIHES_2004__99__235_0
ER  - 
%0 Journal Article
%A Felix, Yves
%A Thomas, Jean-Claude
%A Vigué-Poirrier, Micheline
%T The Hochschild cohomology of a closed manifold
%J Publications Mathématiques de l'IHÉS
%D 2004
%P 235-252
%V 99
%I Springer
%U http://archive.numdam.org/articles/10.1007/s10240-004-0021-y/
%R 10.1007/s10240-004-0021-y
%G en
%F PMIHES_2004__99__235_0
Felix, Yves; Thomas, Jean-Claude; Vigué-Poirrier, Micheline. The Hochschild cohomology of a closed manifold. Publications Mathématiques de l'IHÉS, Tome 99 (2004), pp. 235-252. doi : 10.1007/s10240-004-0021-y. http://archive.numdam.org/articles/10.1007/s10240-004-0021-y/

1. J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci., 42 (1956), 409-412. | MR | Zbl

2. D. Anick, Hopf algebras up to homotopy, J. Am. Math. Soc., 2 (1989), 417-453. | MR | Zbl

3. M. Chas and D. Sullivan, String topology, Ann. Math. (to appear) GT/9911159.

4. R. Cohen and J. Jones, A homotopy theoretic realization of string topology, Math. Ann., 324 (2002), 773-798. | MR | Zbl

5. R. Cohen, J. D. S. Jones and J. Yan, The loop homology algebra of spheres and projective spaces, in: Categorical Decomposition Techniques in Algebraic Topology, Prog. Math. 215, Birkhäuser Verlag, Basel-Boston-Berlin (2004), 77-92. | MR | Zbl

6. R. Cohen, Multiplicative properties of Atiyah duality, in preparation (2003). | MR | Zbl

7. P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math., 29 (1975), 245-274. | MR | Zbl

8. Y. Félix, S. Halperin and J.-C. Thomas, Adams's cobar construction, Trans. Am. Math. Soc., 329 (1992), 531-549. | Zbl

9. Y. Félix, S. Halperin and J.-C. Thomas, Differential graded algebras in topology, in: Handbook of Algebraic Topology, Chapter 16, Elsevier, North-Holland-Amsterdam (1995), 829-865. | MR | Zbl

10. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Grad. Texts Math. 205, Springer-Verlag, New York (2000). | MR | Zbl

11. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267-288. | MR | Zbl

12. J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math., 87 (1987), 403-423. | MR | Zbl

13. M. Vigué-Poirrier, Homologie de Hochschild et homologie cyclique des algèbres différentielles graduées, in: Astérisque: International Conference on Homotopy Theory (Marseille-Luminy-1988), 191 (1990), 255-267. | Numdam | MR | Zbl

Cité par Sources :