We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.
@article{PMIHES_2004__100__171_0, author = {Crawley-Boevey, William}, title = {Indecomposable parabolic bundles}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {171--207}, publisher = {Springer}, volume = {100}, year = {2004}, doi = {10.1007/s10240-004-0025-7}, mrnumber = {2102700}, zbl = {1065.14040}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-004-0025-7/} }
TY - JOUR AU - Crawley-Boevey, William TI - Indecomposable parabolic bundles JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 171 EP - 207 VL - 100 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-004-0025-7/ DO - 10.1007/s10240-004-0025-7 LA - en ID - PMIHES_2004__100__171_0 ER -
Crawley-Boevey, William. Indecomposable parabolic bundles. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 171-207. doi : 10.1007/s10240-004-0025-7. http://archive.numdam.org/articles/10.1007/s10240-004-0025-7/
1. Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett., 5 (1998), 817-836. | MR | Zbl
and ,2. Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., 85 (1957), 181-207. | MR | Zbl
,3. Local systems on P 1-S for S a finite set, Compos. Math., 129 (2001), 67-86. | MR | Zbl
,4. A criterion for the existence of a flat connection on a parabolic vector bundle, Adv. Geom., 2 (2002), 231-241. | MR | Zbl
,5. Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Representation Theory II (Ottawa, 1979), V. Dlab and P. Gabriel (eds.), Lect. Notes Math., 832, Springer, Berlin (1980), 103-169. | MR | Zbl
and ,6. Non-commutative coordinate rings and stacks, Proc. London Math. Soc., 88 (2004), 63-88. | MR | Zbl
and ,7. Geometry of the moment map for representations of quivers, Compos. Math., 126 (2001), 257-293. | MR | Zbl
,8. Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann., 325 (2003), 55-79. | MR | Zbl
,9. On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., 118 (2003), 339-352. | MR | Zbl
,10. Irreducible components of varieties of modules, J. Reine Angew. Math., 553 (2002), 201-220. | MR | Zbl
and ,11. Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer, Berlin (1970). | MR | Zbl
,12. An algorithm of Katz and its application to the inverse Galois problem, J. Symb. Comput., 30 (2000), 761-798. | MR | Zbl
and ,13. Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math., 96 (1992), 38-102. | MR | Zbl
and ,14. A class of weighted projective curves arising in representation theory of finite dimensional algebras, Singularities, representations of algebras, and vector bundles (Lambrecht, 1985), G.-M. Greuel and G. Trautmann (eds.), Lect. Notes Math., 1273, Springer, Berlin (1987), 265-297. | MR | Zbl
and ,15. On nilalgebras and linear varieties of nilpotent matrices, III, Ann. Math., 70 (1959), 167-205. | MR | Zbl
,16. A. Haefliger, Local theory of meromorphic connections in dimension one (Fuchs theory), chapter III of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 129-149.
17. Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120, no. 575 (1996). | MR | Zbl
, and ,18. Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56 (1980), 57-92. | MR | Zbl
,19. Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982), F. Gherardelli (ed.), Lect. Notes Math., 996, Springer, Berlin (1983), 74-108. | MR | Zbl
,20. Rigid local systems, Princeton University Press, Princeton, NJ (1996). | MR | Zbl
,21. On the existence of monodromy groups of Fuchsian systems on Riemann's sphere with unipotent generators, J. Dynam. Control Systems, 2 (1996), 125-155. | Zbl
,22. On the Deligne-Simpson problem, C. R. Acad. Sci., Paris, Sér. I, Math., 329 (1999), 657-662. | MR | Zbl
,23. On some aspects of the Deligne-Simpson problem, J. Dynam. Control Systems, 9 (2003), 393-436. | MR | Zbl
,24. The Deligne-Simpson problem - a survey, preprint math.RA/0206298. | MR | Zbl
,25. Geometry of representations of quivers, Representations of algebras (Durham, 1985), P. Webb (ed.) Lond. Math. Soc. Lect. Note Ser., 116, Cambridge Univ. Press (1986), 109-145. | MR | Zbl
and ,26. Representations of finite dimensional algebras and singularity theory, Trends in ring theory (Miskolc, Hungary, 1996), Canadian Math. Soc. Conf. Proc., 22 (1998), Am. Math. Soc., Providence, RI (1998), 71-97. | MR | Zbl
,27. B. Malgrange, Regular connections, after Deligne, chapter IV of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 151-172.
28. Moduli of vector bundles on curves with parabolic structure, Math. Ann., 248 (1980), 205-239. | MR | Zbl
and ,29. Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, 1992), Can. Math. Soc. Conf. Proc., 14 (1993), Am. Math. Soc., Providence, RI (1993), 313-337. | MR | Zbl
and ,30. Sur le résidue et la monodromie d'une connexion méromorphe, C. R. Acad. Sci., Paris, Sér. A, 281 (1975), 435-438. | Zbl
,31. Sur les connexions méromorphes, Rev. Roum. Math. Pures Appl., 23 (1978), 215-232. | MR | Zbl
,32. Singular regular differential equations and eigenvalues of products of matrices, Linear Multilinear Algebra, 46 (1999), 145-164. | MR | Zbl
and ,33. Tame algebras and integral quadratic forms, Lect. Notes Math., 1099, Springer, Berlin (1984). | MR | Zbl
,34. Matrices and cohomology, Ann. Math., 105 (1977), 473-492. | MR | Zbl
,35. Fibrés vectoriels sur les courbes algébriques, Astérisque, 98 (1982), 1-209. | Numdam | MR | Zbl
,36. Products of Matrices, Differential geometry, global analysis, and topology (Halifax, NS, 1990), Can. Math. Soc. Conf. Proc., 12 (1992), Am. Math. Soc., Providence, RI (1991), 157-185. | MR | Zbl
,37. On linearly rigid tuples, J. Reine Angew. Math., 510 (1999), 57-62. | MR | Zbl
and ,38. The braid group and linear rigidity, Geom. Dedicata, 84 (2001), 135-150. | MR | Zbl
,39. Generalization de fonctions abeliennes, J. Math. Pures Appl., 17 (1938), 47-87. | JFM
,Cité par Sources :