Let be a field. We show that every countable subgroup of is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of is exact, in the sense of -algebra theory.
@article{PMIHES_2005__101__243_0, author = {Guentner, Erik and Higson, Nigel and Weinberger, Shmuel}, title = {The {Novikov} conjecture for linear groups}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {243--268}, publisher = {Springer}, volume = {101}, year = {2005}, doi = {10.1007/s10240-005-0030-5}, mrnumber = {2217050}, zbl = {1073.19003}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-005-0030-5/} }
TY - JOUR AU - Guentner, Erik AU - Higson, Nigel AU - Weinberger, Shmuel TI - The Novikov conjecture for linear groups JO - Publications Mathématiques de l'IHÉS PY - 2005 SP - 243 EP - 268 VL - 101 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-005-0030-5/ DO - 10.1007/s10240-005-0030-5 LA - en ID - PMIHES_2005__101__243_0 ER -
%0 Journal Article %A Guentner, Erik %A Higson, Nigel %A Weinberger, Shmuel %T The Novikov conjecture for linear groups %J Publications Mathématiques de l'IHÉS %D 2005 %P 243-268 %V 101 %I Springer %U http://archive.numdam.org/articles/10.1007/s10240-005-0030-5/ %R 10.1007/s10240-005-0030-5 %G en %F PMIHES_2005__101__243_0
Guentner, Erik; Higson, Nigel; Weinberger, Shmuel. The Novikov conjecture for linear groups. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 243-268. doi : 10.1007/s10240-005-0030-5. http://archive.numdam.org/articles/10.1007/s10240-005-0030-5/
1. Linear groups of finite cohomological dimension. Invent. Math., 66 (1982), 89-98. | MR | Zbl
, ,2. Amenability and exactness for dynamical systems and their C*-algebras. Trans. Amer. Math. Soc., 354 (2002), 4153-4178 (electronic). | MR | Zbl
,3. Spectral asymmetry and Riemannian geometry, I. Math. Proc. Cambridge Philos. Soc., 77 (1975), 43-69. | MR | Zbl
, , ,4. Spectral asymmetry and Riemannian geometry, II. Math. Proc. Cambridge Philos. Soc., 78 (1975), 405-432. | MR | Zbl
, , ,5. N. Bourbaki, Commutative algebra. Berlin: Springer 1989.
6. Classifying space for proper actions and K-theory of group C*-algebras, in C*-algebras: 1943-1993 (San Antonio, TX, 1993), vol. 167 of Contemp. Math., pp. 240-291. Providence, RI: Am. Math. Soc. 1994. | MR | Zbl
, , ,7. Proper affine isometric actions of amenable groups, in Novikov conjectures, index theorems and rigidity, vol. 2 (Oberwolfach, 1993), vol. 227 of London Math. Soc. Lecture Note Ser., pp. 1-4. Cambridge: Cambridge Univ. Press 1995. | MR | Zbl
, , ,8. Buildings. New York: Springer 1989. | MR | Zbl
,9. Local fields, vol. 3 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press 1986. | MR | Zbl
,10. Groups with the Haagerup property, vol. 197 of Progress in Mathematics. Basel: Birkhäuser 2001. Gromov's a-T-menability. | Zbl
, , , , ,11. Constructions preserving Hilbert space uniform embeddability of discrete groups. Trans. Amer. Math. Soc., 355 (2003), 3235-3275. | MR | Zbl
, ,12. La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger). Astérisque, 175 (1989). With an appendix by M. Burger. | Numdam | MR | Zbl
, ,13. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, vol. 11 of Mathematics Lecture Series. Publish or Perish, Inc. 1984. | MR | Zbl
,14. Asymptotic invariants of infinite groups, in Geometric group theory, vol. 2 (Sussex, 1991), vol. 182 of London Math. Soc. Lecture Note Ser., pp. 1-295. Cambrige: Cambridge Univ. Press 1993. | MR | Zbl
,15. Exactness and the Novikov conjecture and addendum. Topology, 41 (2002), 411-419. | MR | Zbl
, ,16. An example of a nonnuclear C*-algebra, which has the metric approximation property. Invent. Math., 50 (1978/79), 279-293. | MR | Zbl
,17. Differential Geometry, Lie Groups, and Symmetric Spaces, vol. 80 of Pure and Applied Mathematics. New York: Academic Press 1978. | MR | Zbl
,18. Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal., 10 (2000), 563-581. | MR | Zbl
,19. Operator K-theory for groups which act properly and isometrically on Hilbert space. Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 131-142 (electronic). | MR | Zbl
, ,20. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144 (2001), 23-74. | MR | Zbl
, ,21. Equivariant KK-theory and the Novikov conjecture. Invent. Math., 91 (1988), 147-201. | MR | Zbl
,22. Groups acting on buildings, operator K-theory, and Novikov's conjecture. K-Theory, 4 (1991), 303-337. | Zbl
, ,23. Permanence properties of C*-exact groups. Doc. Math., 4 (1999), 513-558 (electronic). | MR | Zbl
, ,24. Algebra, 2nd edn. Menlo Park, CA: Addison-Wesley 1984. | MR | Zbl
,25. Computations of K- and L-theory of cocompact planar groups. K-Theory, 21 (2000), 249-292. | MR | Zbl
, ,26. The classifying spaces of surgery and cobordism of topological manifolds. Princeton Univ. Press 1970. | Zbl
, ,27. Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris, Sér. I, Math., 330 (2000), 691-695. | MR | Zbl
,28. Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras. J. Oper. Theory, 4 (1980), 93-118. | MR | Zbl
, ,29. Trees. Translated from the French by J. Stillwell. Berlin: Springer 1980. | MR | Zbl
,30. The coarse Baum-Connes conjecture and groupoids. Topology, 41 (2002), 807-834. | MR | Zbl
, , ,31. C*- exact groups, in C*-algebras (Münster, 1999), pp. 243-249. Berlin: Springer 2000. | MR | Zbl
,32. Homotopy invariance of η-invariants. Proc. Natl. Acad. Sci., 85 (1988), 5362-5363. | Zbl
,33. Rationality of ρ-invariants. Math. Z., 223 (1996), 197-246. Appendix to “Jumps of the eta-invariant”, by and . | Zbl
,34. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139 (2000), 201-240. | MR | Zbl
,35. Kazhdan groups acting on compact manifolds. Invent. Math., 75 (1984), 425-436. | MR | Zbl
,Cité par Sources :