Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.
@article{PMIHES_2005__101__69_0, author = {Couwenberg, Wim and Heckman, Gert and Looijenga, Eduard}, title = {Geometric structures on the complement of a projective arrangement}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {69--161}, publisher = {Springer}, volume = {101}, year = {2005}, doi = {10.1007/s10240-005-0032-3}, mrnumber = {2217047}, zbl = {1083.14039}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-005-0032-3/} }
TY - JOUR AU - Couwenberg, Wim AU - Heckman, Gert AU - Looijenga, Eduard TI - Geometric structures on the complement of a projective arrangement JO - Publications Mathématiques de l'IHÉS PY - 2005 SP - 69 EP - 161 VL - 101 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-005-0032-3/ DO - 10.1007/s10240-005-0032-3 LA - en ID - PMIHES_2005__101__69_0 ER -
%0 Journal Article %A Couwenberg, Wim %A Heckman, Gert %A Looijenga, Eduard %T Geometric structures on the complement of a projective arrangement %J Publications Mathématiques de l'IHÉS %D 2005 %P 69-161 %V 101 %I Springer %U http://archive.numdam.org/articles/10.1007/s10240-005-0032-3/ %R 10.1007/s10240-005-0032-3 %G en %F PMIHES_2005__101__69_0
Couwenberg, Wim; Heckman, Gert; Looijenga, Eduard. Geometric structures on the complement of a projective arrangement. Publications Mathématiques de l'IHÉS, Tome 101 (2005), pp. 69-161. doi : 10.1007/s10240-005-0032-3. http://archive.numdam.org/articles/10.1007/s10240-005-0032-3/
1. Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig-Wiesbaden 1987. | MR | Zbl
, , ,2. Zariski theorems and diagrams for braid groups, Invent. Math., 145 (2001), 487-507, also available at arXiv math.GR/0010323. | MR | Zbl
,3. Groupes et algèbres de Lie, Ch. 4, 5 et 6 Actualités Scientifiques et industrielles, vol. 1337, Hermann, Paris 1968. | MR | Zbl
,4. Die Fundamentalgruppe des Raumes der regulären Orbits einer komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57-61. | MR | Zbl
,5. W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished).
6. Finite complex reflection groups, Ann. Sci. Éc. Norm. Super., 9 (1976), 379-446. | Numdam | MR | Zbl
,7. P. B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1,n) by Deligne and Mostow, Bull. Am. Math. Soc., 32 (1995), 88-105. | MR
8. Applications of the André-Oort Conjecture to some questions in transcendency, in: A Panorama in Number Theory, a view from Baker's garden, Cambridge University Press, London New York 2002, 89-106. | Zbl
, ,9. W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at http://members.chello.nl/ w.couwenberg/.
10. Regular complex polytopes, Cambridge University Press, London New York 1974. | MR | Zbl
,11. Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs, Publ. Math., Inst. Hautes Étud. Sci., 40 (1971), 81-116. | Numdam | MR | Zbl
, , ,12. Équations Différentielles à Points Singuliers Réguliers, Lect. Notes Math., vol. 163, Springer, Berlin etc. 1970. | MR | Zbl
,13. Les immeubles de groupes de tresses généralisées, Invent. Math., 17 (1972), 273-302. | MR | Zbl
,14. Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 5-89. | Numdam | MR | Zbl
, ,15. Commensurabilities among lattices in PU(1,n), Ann. of Math. Studies, vol. 132, Princeton University Press, Princeton 1993. | MR | Zbl
, ,16. B. R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003.
17. Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer, Berlin, 1984. | MR | Zbl
, ,18. The Geometry of some special Arithmetic Quotients, Springer Lect. Notes Math., vol. 1637, 1996. | MR | Zbl
,19. Janus-like algebraic varieties, J. Differ. Geom., 39 (1994), 507-557. | MR | Zbl
, ,20. Chern Numbers of Algebraic Surfaces, Hirzebruch's Examples are Picard Modular Surfaces, Math. Nachr., 126 (1986), 255-273. | Zbl
,21. Transcendental Ball Points of Algebraic Picard Integrals, Math. Nachr., 161 (1993), 7-25. | MR | Zbl
,22. Arrangements, KZ systems and Lie algebra homology, in: Singularity Theory, B. Bruce and D. Mond, eds., London Math. Soc. Lecture Note Series 263, Cambridge University Press, London New York 1999, 109-130. | MR | Zbl
,23. Compactifications defined by arrangements I: the ball quotient case, Duke Math. J., 118 (2003), 151-187, also available at arXiv math.AG/0106228. | MR | Zbl
,24. Sur les points singuliers des équations differentielles, Enseign. Math., 20 (1974), 147-176. | MR | Zbl
,25. J. Moduli fuchsiani, Ann. Sc. Norm. Super. Pisa, 19 (1965), 113-126. | Numdam | MR | Zbl
,26. Generalized Picard lattices arising from half-integral conditions, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 91-106. | Numdam | MR | Zbl
,27. Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 23-45. | MR | Zbl
, ,28. Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer, Berlin, 1992. | MR | Zbl
, ,29. Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math., 75 (1873), 292-335. | JFM
,30. Finite unitary reflection groups, Can. J. Math., 6 (1954), 274-304. | MR | Zbl
, ,31. On purely transcendental fields of automorphic functions of several variables, Osaka J. Math., 1 (1964), 1-14. | MR | Zbl
,32. Invariants of finite reflection groups, Nagoya Math. J., 22 (1963), 57-64. | MR | Zbl
,33. Three-Dimensional Geometry and Topology, vol. I, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton 1997. | MR | Zbl
,34. Shapes of polyhedra and triangulations of the sphere, Geom. Topol. Monogr., 1 (1998), 511-549. | MR | Zbl
,35. Orbifold-uniformizing differential equations. III. Arrangements defined by 3-dimensional primitive unitary reflection groups, Math. Ann., 274 (1986), 319-334. | MR | Zbl
,Cité par Sources :