We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism group which does not contain an arithmetic group of finite index. Finally we discuss applications of our results to the groups of homotopy self-equivalences of K(Γ,1)-spaces and obtain an extension of arithmeticity results of Sullivan in rational homotopy theory.
@article{PMIHES_2006__104__213_0, author = {Baues, Oliver and Grunewald, Fritz}, title = {Automorphism groups of polycyclic-by-finite groups and arithmetic groups}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {213--268}, publisher = {Springer}, volume = {104}, year = {2006}, doi = {10.1007/s10240-006-0003-3}, mrnumber = {2264837}, zbl = {1121.20027}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-006-0003-3/} }
TY - JOUR AU - Baues, Oliver AU - Grunewald, Fritz TI - Automorphism groups of polycyclic-by-finite groups and arithmetic groups JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 213 EP - 268 VL - 104 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-006-0003-3/ DO - 10.1007/s10240-006-0003-3 LA - en ID - PMIHES_2006__104__213_0 ER -
%0 Journal Article %A Baues, Oliver %A Grunewald, Fritz %T Automorphism groups of polycyclic-by-finite groups and arithmetic groups %J Publications Mathématiques de l'IHÉS %D 2006 %P 213-268 %V 104 %I Springer %U http://archive.numdam.org/articles/10.1007/s10240-006-0003-3/ %R 10.1007/s10240-006-0003-3 %G en %F PMIHES_2006__104__213_0
Baues, Oliver; Grunewald, Fritz. Automorphism groups of polycyclic-by-finite groups and arithmetic groups. Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 213-268. doi : 10.1007/s10240-006-0003-3. http://archive.numdam.org/articles/10.1007/s10240-006-0003-3/
1. The automorphism group of a polycyclic group, Ann. Math. (2), 89 (1969), 314-322 | MR | Zbl
,2. On a problem of Philip Hall, Ann. Math. (2), 86 (1967), 112-116 | MR | Zbl
,3. On a conjecture of C. T. C. Wall, J. Lond. Math. Soc., II. Ser., 14 (1976), 331-332 | MR | Zbl
, ,4. Automorphism groups of finitely generated nilpotent groups, Bull. Am. Math. Soc., 73 (1967), 716-717 | MR | Zbl
, ,5. Automorphism groups of nilpotent groups, Am. J. Math., 91 (1969), 1003-1011 | MR | Zbl
,6. Lectures on Nilpotent Groups, A.M.S., Providence, R.I. (1971)
,7. Finite extensions and unipotent shadows of affine crystallographic groups, C. R. Acad. Sci., Paris, Sér. I, Math., 335 (2002), 785-788 | MR | Zbl
,8. Infrasolvmanifolds and rigidity of subgroups in solvable linear algebraic groups, Topology, 43 (2004), 903-924 | MR | Zbl
,9. Arithmetic properties of linear algebraic groups, Proc. I.C.M. Stockholm (1962), 10-22. | MR | Zbl
,10. Density and maximality of arithmetic subgroups, J. Reine Angew. Math., 224 (1966), 78-89 | MR | Zbl
,11. Linear algebraic groups, second edn., Graduate Texts in Mathematics, vol. 126, Springer, New York, 1991. | MR | Zbl
,12. Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., 39 (1964), 111-164 | MR | Zbl
, ,13. Groupes réductifs, Publ. Math., Inst. Hautes Étud. Sci., 27 (1965), 55-150 | Numdam | MR | Zbl
, ,14. Cohomology of groups, Springer, New York-Berlin (1982) | MR | Zbl
,15. Algebraic groups of automorphisms of nilpotent groups and Lie algebras, J. Lond. Math. Soc., II. Ser., 33 (1986), 453-466 | MR | Zbl
, ,16. Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci., Paris, Sér. A-B, 287 (1978), A203-A208 | MR | Zbl
,17. Polycyclic groups, analytic groups and algebraic groups, Proc. Lond. Math. Soc., III. Ser., 85 (2002), 62-92 | MR | Zbl
,18. Rational homotopy theory and differential forms, Birkhäuser, Boston, Mass. (1981) | MR | Zbl
, ,19. Solvable arithmetic groups and arithmeticity problems, Duke Math. J., 10 (1999), 327-366 | MR | Zbl
, ,20. On finite extensions of arithmetic groups, C. R. Acad. Sci. Paris, 325 (1997), 1153-1158 | MR | Zbl
, ,21. Rigidity results for groups with radical, cohomology of finite groups and arithmeticity problems, Duke Math. J., 100 (1999), 321-358 | MR | Zbl
, ,22. Non-arithmetic polycyclic groups, C. R. Acad. Sci. Paris, 326 (1998), 1359-1364 | MR | Zbl
, ,23. Rigidity and automorphism groups of solvable arithmetic groups, C. R. Acad. Sci. Paris, 327 (1998), 427-432 | MR | Zbl
, ,24. Nilpotent groups and unipotent algebraic groups, J. Pure Appl. Algebra, 37 (1985), 299-313 | Zbl
, ,25. On affine crystallographic groups, J. Differ. Geom., 40 (1994), 563-594 | MR | Zbl
, ,26. Homologie et cohomologie des algébres de Lie, Bull. Soc. Math. Fr., 78 (1950), 65-127 | Numdam | MR | Zbl
,27. Cohomology of nilmanifolds and torsion-free, nilpotent groups, Trans. Am. Math. Soc., 273 (1982), 39-55 | MR | Zbl
, ,28. Homology, Springer, Berlin-Göttingen-Heidelberg (1963) | MR | Zbl
,29. A. I. Mal'cev, On a class of homogeneous spaces, Am. Math. Soc. Transl., 39 (1951), 1-33.
30. Integer representation of the holomorphs of polycyclic groups, Algebra Log., 9 (1970), 539-558 | MR | Zbl
,31. Representative functions on discrete groups and solvable arithmetic subgroups, Am. J. Math., 92 (1970), 1-32 | MR | Zbl
,32. Some applications of representative functions to solvmanifolds, Am. J. Math., 93 (1971), 11-32 | MR | Zbl
,33. On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math. (2), 59 (1954), 531-538 | MR | Zbl
,34. Automorphism groups of nilpotent groups and spaces, J. Pure Appl. Algebra, 150 (2000), 307-319 | MR | Zbl
, ,35. Algebraic Groups and Number Theory, Academic Press, Boston, MA, 1994. | MR | Zbl
and ,36. Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68, Springer, New York-Heidelberg, 1972. | MR | Zbl
,37. Genus and symmetry in homotopy theory, Math. Ann., 305 (1996), 381-386 | MR | Zbl
,38. Width of verbal subgroups in solvable groups, Algebra Log., 21 (1982), 60-72 | MR | Zbl
,39. Spaces of homotopy self-equivalences, Lect. Notes Math., vol. 1662, Springer, Berlin, 1997. | MR | Zbl
,40. Polycyclic groups, Cambridge Univ. Press, London (1983) | MR | Zbl
,41. On the outer automorphism group of a polycyclic group, Proceedings of the Second International Group Theory Conference (Bressanone, 1989), Rend. Circ. Mat. Palermo, II. Ser. (1990), Suppl. no. 23, 265-278. | MR | Zbl
,42. Arithmetic groups, Lond. Math. Soc. Lect. Notes, 36 (1979), 105-135 | MR | Zbl
,43. Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), pp. 77-169, Ann. Math. Stud., no. 70, Princeton Univ. Press, Princeton, N.J., 1971. | MR | Zbl
,44. Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., 47 (1977), 269-331 | Numdam | MR | Zbl
,45. Genetics of homotopy theory and the Adams conjecture, Ann. Math. (2), 100 (1974), 1-79 | MR | Zbl
,46. Two remarks on polycyclic groups, Bull. Lond. Math. Soc., 26 (1994), 543-548 | MR | Zbl
,47. On the holomorphs of soluble groups of finite rank, J. Pure Appl. Algebra, 4 (1974), 55-69 | MR | Zbl
,Cité par Sources :