Cochains and homotopy type
Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246.

Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E algebras is faithful but not full.

@article{PMIHES_2006__103__213_0,
     author = {Mandell, Michael A.},
     title = {Cochains and homotopy type},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {213--246},
     publisher = {Springer},
     volume = {103},
     year = {2006},
     doi = {10.1007/s10240-006-0037-6},
     mrnumber = {2233853},
     zbl = {1105.55003},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-006-0037-6/}
}
TY  - JOUR
AU  - Mandell, Michael A.
TI  - Cochains and homotopy type
JO  - Publications Mathématiques de l'IHÉS
PY  - 2006
SP  - 213
EP  - 246
VL  - 103
PB  - Springer
UR  - https://www.numdam.org/articles/10.1007/s10240-006-0037-6/
DO  - 10.1007/s10240-006-0037-6
LA  - en
ID  - PMIHES_2006__103__213_0
ER  - 
%0 Journal Article
%A Mandell, Michael A.
%T Cochains and homotopy type
%J Publications Mathématiques de l'IHÉS
%D 2006
%P 213-246
%V 103
%I Springer
%U https://www.numdam.org/articles/10.1007/s10240-006-0037-6/
%R 10.1007/s10240-006-0037-6
%G en
%F PMIHES_2006__103__213_0
Mandell, Michael A. Cochains and homotopy type. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 213-246. doi : 10.1007/s10240-006-0037-6. https://www.numdam.org/articles/10.1007/s10240-006-0037-6/

1. A. K. Bousfield, The localization of spaces with respect to homology, Topology, 14 (1975), 133-150. | MR | Zbl

2. E. Dror, A generalization of the Whitehead theorem, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, WA 1971), Lect. Notes Math., vol. 249, Springer, Berlin, 1971, pp. 13-22. | MR | Zbl

3. W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, J. Pure Appl. Algebra, 17 (1980), 267-284. | MR | Zbl

4. W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra, 18 (1980), 17-35. | MR | Zbl

5. W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology, 19 (1980), 427-440. | MR | Zbl

6. W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126. | MR | Zbl

7. V. Hinich, Virtual operad algebras and realization of homotopy types, J. Pure Appl. Algebra, 159 (2001), 173-185. | MR | Zbl

8. M. A. Mandell, Equivalence of simplicial localizations of closed model categories, J. Pure Appl. Algebra, 142 (1999), 131-152. | MR | Zbl

9. M. A. Mandell, E∞ algebras and p-adic homotopy theory, Topology, 40 (2001), 43-94. | Zbl

10. M. A. Mandell, Equivariant p-adic homotopy theory, Topology Appl., 122 (2002), 637-651. | MR | Zbl

11. J. P. May, Simplicial objects in algebraic topology, D. Van Nostrand Co., Inc., Princeton, NJ - Toronto, ON - London, 1967. | MR | Zbl

12. D. G. Quillen, Homotopical algebra, Lect. Notes Math., vol. 43, Springer, Berlin, 1967. | MR | Zbl

13. D. G. Quillen, Rational homotopy theory, Ann. Math., 90 (1969), 205-295. | MR | Zbl

14. J.-P. Serre, Local fields, Springer, New York, 1979. Translated from the French by M. J. Greenberg. | MR | Zbl

15. V. A. Smirnov, Homotopy theory of coalgebras, Math. USSR-Izv., 27 (1986), 575-592. | MR | Zbl

16. J. R. Smith, Operads and algebraic homotopy, preprint math.AT/0004003.

17. D. Sullivan, The genetics of homotopy theory and the Adams conjecture, Ann. Math., 100 (1974), 1-79. | MR | Zbl

18. D. Sullivan, Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., 47 (1978), 269-331. | Numdam | MR | Zbl

  • Laplante‐Anfossi, Guillaume; Williams, Nicholas J. Steenrod operations via higher Bruhat orders, Proceedings of the London Mathematical Society, Volume 130 (2025) no. 2 | DOI:10.1112/plms.70024
  • Medina-Mardones, Anibal M.; Rivera, Manuel Adams’ cobar construction as a monoidal -coalgebra model of the based loop space, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.50
  • Raptis, George; Rivera, Manuel The Simplicial Coalgebra of Chains Under Three Different Notions of Weak Equivalence, International Mathematics Research Notices, Volume 2024 (2024) no. 16, p. 11766 | DOI:10.1093/imrn/rnae031
  • Horel, Geoffroy Binomial rings and homotopy theory, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2024) no. 0 | DOI:10.1515/crelle-2024-0039
  • Medina-Mardones, Anibal M.; Pizzi, Andrea; Salvatore, Paolo Multisimplicial chains and configuration spaces, Journal of Homotopy and Related Structures, Volume 19 (2024) no. 2, p. 275 | DOI:10.1007/s40062-024-00344-7
  • Medina-Mardones, Anibal Ranicki–Weiss assembly and the Steenrod construction, Proceedings of the American Mathematical Society (2024) | DOI:10.1090/proc/16685
  • Drummond-Cole, Gabriel C.; Horel, Geoffroy Homotopy transfer and formality, Annales de l'Institut Fourier, Volume 71 (2022) no. 5, p. 2079 | DOI:10.5802/aif.3444
  • Curry, Justin; Hang, Haibin; Mio, Washington; Needham, Tom; Okutan, Osman Berat Decorated merge trees for persistent topology, Journal of Applied and Computational Topology, Volume 6 (2022) no. 3, p. 371 | DOI:10.1007/s41468-022-00089-3
  • Cirici, Joana; Horel, Geoffroy Étale cohomology, purity and formality with torsion coefficients, Journal of Topology, Volume 15 (2022) no. 4, p. 2270 | DOI:10.1112/topo.12273
  • Yuan, Allen Integral models for spaces via the higher Frobenius, Journal of the American Mathematical Society, Volume 36 (2022) no. 1, p. 107 | DOI:10.1090/jams/998
  • Rivera, Manuel; Wierstra, Felix; Zeinalian, Mahmoud The simplicial coalgebra of chains determines homotopy types rationally and one prime at a time, Transactions of the American Mathematical Society (2022) | DOI:10.1090/tran/8579
  • Blomquist, Jacobson; Harper, John Higher stabilization and higher Freudenthal suspension, Transactions of the American Mathematical Society, Volume 375 (2022) no. 11, p. 8193 | DOI:10.1090/tran/8759
  • Dehling, Malte; Vallette, Bruno Symmetric homotopy theory for operads, Algebraic Geometric Topology, Volume 21 (2021) no. 4, p. 1595 | DOI:10.2140/agt.2021.21.1595
  • Brumfiel, Greg; Medina-Mardones, Anibal; Morgan, John A cochain level proof of Adem relations in the mod 2 Steenrod algebra, Journal of Homotopy and Related Structures, Volume 16 (2021) no. 4, p. 517 | DOI:10.1007/s40062-021-00287-3
  • Behrens, Mark; Rezk, Charles Spectral Algebra Models of Unstable vn-Periodic Homotopy Theory, Bousfield Classes and Ohkawa's Theorem, Volume 309 (2020), p. 275 | DOI:10.1007/978-981-15-1588-0_10
  • Petersen, Dan Cohomology of generalized configuration spaces, Compositio Mathematica, Volume 156 (2020) no. 2, p. 251 | DOI:10.1112/s0010437x19007747
  • Richter, Birgit; Sagave, Steffen A strictly commutative model for the cochain algebra of a space, Compositio Mathematica, Volume 156 (2020) no. 8, p. 1718 | DOI:10.1112/s0010437x20007319
  • Behrens, Mark; Rezk, Charles The Bousfield-Kuhn functor and topological André-Quillen cohomology, Inventiones mathematicae, Volume 220 (2020) no. 3, p. 949 | DOI:10.1007/s00222-019-00941-x
  • Stelzer, Manfred Purity and homotopy theory of coalgebras, Journal of Pure and Applied Algebra, Volume 223 (2019) no. 6, p. 2455 | DOI:10.1016/j.jpaa.2018.09.002
  • Yalin, Sinan Moduli Spaces of (Bi)algebra Structures in Topology and Geometry, 2016 MATRIX Annals, Volume 1 (2018), p. 439 | DOI:10.1007/978-3-319-72299-3_20
  • Bayındır, Haldun Özgür Topological equivalences of E-infinity differential graded algebras, Algebraic Geometric Topology, Volume 18 (2018) no. 2, p. 1115 | DOI:10.2140/agt.2018.18.1115
  • Evans, Jonathan; Lekili, Yankı Generating the Fukaya categories of Hamiltonian 𝐺-manifolds, Journal of the American Mathematical Society, Volume 32 (2018) no. 1, p. 119 | DOI:10.1090/jams/909
  • Ungheretti, M. Free loop space and the cyclic bar construction, Bulletin of the London Mathematical Society, Volume 49 (2017) no. 1, p. 95 | DOI:10.1112/blms.12007
  • Ginot, Grégory Notes on Factorization Algebras, Factorization Homology and Applications, Mathematical Aspects of Quantum Field Theories (2015), p. 429 | DOI:10.1007/978-3-319-09949-1_13
  • Smith, Justin R. Steenrod coalgebras, Topology and its Applications, Volume 185-186 (2015), p. 93 | DOI:10.1016/j.topol.2015.02.009
  • Loday, Jean-Louis; Vallette, Bruno Examples of Algebraic Operads, Algebraic Operads, Volume 346 (2012), p. 479 | DOI:10.1007/978-3-642-30362-3_13
  • Wilson, Scott O. Rectifying partial algebras over operads of complexes, Topology and its Applications, Volume 157 (2010) no. 18, p. 2880 | DOI:10.1016/j.topol.2010.09.009
  • Chataur, David Formes différentielles généralisées sur une opérade et modèles algébriques des fibrations, Algebraic Geometric Topology, Volume 2 (2002) no. 1, p. 51 | DOI:10.2140/agt.2002.2.51

Cité par 28 documents. Sources : Crossref