The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras associated with wreath-products.
@article{PMIHES_2007__105__91_0, author = {Etingof, Pavel and Gan, Wee Liang and Ginzburg, Victor and Oblomkov, Alexei}, title = {Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {91--155}, publisher = {Springer}, volume = {105}, year = {2007}, doi = {10.1007/s10240-007-0005-9}, zbl = {1188.16010}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-007-0005-9/} }
TY - JOUR AU - Etingof, Pavel AU - Gan, Wee Liang AU - Ginzburg, Victor AU - Oblomkov, Alexei TI - Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products JO - Publications Mathématiques de l'IHÉS PY - 2007 SP - 91 EP - 155 VL - 105 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-007-0005-9/ DO - 10.1007/s10240-007-0005-9 LA - en ID - PMIHES_2007__105__91_0 ER -
%0 Journal Article %A Etingof, Pavel %A Gan, Wee Liang %A Ginzburg, Victor %A Oblomkov, Alexei %T Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products %J Publications Mathématiques de l'IHÉS %D 2007 %P 91-155 %V 105 %I Springer %U http://archive.numdam.org/articles/10.1007/s10240-007-0005-9/ %R 10.1007/s10240-007-0005-9 %G en %F PMIHES_2007__105__91_0
Etingof, Pavel; Gan, Wee Liang; Ginzburg, Victor; Oblomkov, Alexei. Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products. Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 91-155. doi : 10.1007/s10240-007-0005-9. http://archive.numdam.org/articles/10.1007/s10240-007-0005-9/
1. A proof of Jantzen conjectures, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 1-50, Amer. Math. Soc., Providence, RI, 1993. | MR | Zbl
and ,2. Cherednik algebras and differential operators on quasi-invariants, Duke Math. J., 118 (2003), 279-337 | MR | Zbl
, , ,3. with an Appendix by P. Etingof, Cherednik algebras and Hilbert schemes in characteristic p , Represent. Theory, 10 (2006), 254-298 | MR | Zbl
, , ,4. Quantization of minimal resolutions of Kleinian singularities, Adv. Math., 211 (2007), 244-265 | MR
,5. Decomposition of Marsden-Weinstein reductions for representations of quivers, Compos. Math., 130 (2002), 225-239 | MR | Zbl
,6. Noncommutative deformations of Kleinian singularities, Duke Math. J., 92 (1998), 605-635 | MR | Zbl
, ,7. Dunkl operators for complex reflection groups, Proc. London Math. Soc., 86 (2003), 70-108 | MR | Zbl
, ,8. P. Etingof, Cherednik and Hecke algebras of varieties with a finite group action, preprint. math.QA/0406499.
9. Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., 147 (2002), 243-348 | MR | Zbl
, ,10. P. Etingof, V. Ginzburg and E. Rains, in preparation.
11. Reflection functors and symplectic reflection algebras for wreath products, Adv. Math., 205 (2006), 599-630 | MR
,12. Deformed preprojective algebras and symplectic reflection algebras for wreath products, J. Algebra, 283 (2005), 350-363 | MR
, ,13. W. L. Gan and V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik algebras, IMPR, Int. Math. Res. Pap., 2006 (2006), Article ID 26439. math.RT/0409262. | MR | Zbl
14. A remark on rational Cherednik algebras and differential operators on the cyclic quiver, Glasg. Math. J., 48 (2006), 145-160 | MR
,15. Rational Cherednik algebras and Hilbert schemes I, II, Adv. Math., 198 (2005), 222-274 and Duke Math. J., 132 (2006), 73-135. math.RA/0407516 and math.RT/0410293. | MR | Zbl
and ,16. Cherednik algebras and Yangians, Int. Math. Res. Not., 2005 (2005), 3551-3593 | MR | Zbl
,17. Affine Yangians and deformed double current algebras in type A, Adv. Math., 211 (2007), 436-484 | MR
,18. N. Guay, Quantum algebras and symplectic reflection algebras for wreath products, preprint.
19. Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers, Ann. Sci. Éc. Norm. Supér., IV. Sér., 32 (1999), 813-834 | Numdam | MR | Zbl
,20. The construction of ALE spaces as hyper-Kahler quotients, J. Differ. Geom., 29 (1989), 665-683 | MR | Zbl
,21. Quivers, Perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., 4 (1991), 365-421 | MR | Zbl
,22. Quiver varieties and Weyl group actions, Ann. Inst. Fourier, 50 (2000), 461-489 | Numdam | MR | Zbl
,23. A remark on quiver varieties and Weyl groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 1 (2002), 649-686 | Numdam | MR
,24. Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation, Algebra Discrete Math., 2004 (2004), 89-110 | MR | Zbl
,25. Finite dimensional representations of symplectic reflection algebras associated to wreath products II, preprint. math.RT/0501156. | MR
,26. Hilbert schemes and noncommutative deformations of type A Kleinian singularities, J. Algebra, 293 (2005), 102-129 | MR | Zbl
,27. Reflection functors for quiver varieties and Weyl group actions, Math. Ann., 327 (2003), 671-721 | MR | Zbl
,28. Deformed Harish-Chandra homomorphism for the cyclic quiver, preprint. math.RT/0504395. | MR
,29. The rational invariants of the tame quivers, Invent. Math., 58 (1980), 217-239 | MR | Zbl
,30. Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., 36 (1976), 295-312 | MR | Zbl
,Cité par Sources :