Homological projective duality
Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 157-220.

We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces, a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singularities of these sections are equivalent. We also investigate homological projective duality for projectivizations of vector bundles.

@article{PMIHES_2007__105__157_0,
     author = {Kuznetsov, Alexander},
     title = {Homological projective duality},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {157--220},
     publisher = {Springer},
     volume = {105},
     year = {2007},
     doi = {10.1007/s10240-007-0006-8},
     mrnumber = {2354207},
     zbl = {1131.14017},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-007-0006-8/}
}
TY  - JOUR
AU  - Kuznetsov, Alexander
TI  - Homological projective duality
JO  - Publications Mathématiques de l'IHÉS
PY  - 2007
SP  - 157
EP  - 220
VL  - 105
PB  - Springer
UR  - http://archive.numdam.org/articles/10.1007/s10240-007-0006-8/
DO  - 10.1007/s10240-007-0006-8
LA  - en
ID  - PMIHES_2007__105__157_0
ER  - 
%0 Journal Article
%A Kuznetsov, Alexander
%T Homological projective duality
%J Publications Mathématiques de l'IHÉS
%D 2007
%P 157-220
%V 105
%I Springer
%U http://archive.numdam.org/articles/10.1007/s10240-007-0006-8/
%R 10.1007/s10240-007-0006-8
%G en
%F PMIHES_2007__105__157_0
Kuznetsov, Alexander. Homological projective duality. Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 157-220. doi : 10.1007/s10240-007-0006-8. http://archive.numdam.org/articles/10.1007/s10240-007-0006-8/

1. A. Bondal, Representations of associative algebras and coherent sheaves (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 53 (1989), 25-44 | MR | Zbl

2. A. Bondal and M. Kapranov, Representable functors, Serre functors, and reconstructions (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 53 (1989), 1183-1205, 1337; translation in Math. USSR-Izv., 35 (1990), 519-541. | MR | Zbl

3. A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, preprint math.AG/9506012.

4. A. Bondal and D. Orlov, Derived categories of coherent sheaves, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 47-56, Higher Ed. Press, Beijing, 2002. | MR | Zbl

5. A. Bondal and D. Orlov, private communication.

6. A. Bondal, D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compos. Math., 125 (2001), 327-344 | MR | Zbl

7. A. Bondal and M. Van Den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 3 (2003), 1-36, 258. | MR

8. R. Hartshorn, Residues and Duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne., Springer, Berlin, New York (1966) | MR

9. K. Hori and C. Vafa, Mirror Symmetry, arXiv:hep-th/0404196.

10. M. Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 120-139, Birkhäuser, Basel, 1995. | MR | Zbl

11. A. Kuznetsov, Hyperplane sections and derived categories (Russian), Izv. Ross. Akad. Nauk, Ser. Mat., 70 (2006), 23-128 | MR | Zbl

12. A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, preprint math.AG/0510670. | Zbl

13. A. Kuznetsov, Exceptional collections for Grassmannians of isotropic lines, preprint math.AG/0512013. | Zbl

14. A. Kuznetsov, Homological projective duality for Grassmannians of lines, preprint math.AG/0610957.

15. D. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves (Russian), Izv. Ross. Akad. Nauk, Ser. Mat., 56 (1992), 852-862 | MR | Zbl

16. D. Orlov, Equivalences of derived categories and K3 surfaces, algebraic geometry, 7, J. Math. Sci., New York, 84 (1997), 1361-1381 | MR | Zbl

17. D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models (Russian), Tr. Mat. Inst. Steklova, 246 (2004), 240-262 | MR | Zbl

18. D. Orlov, Triangulated categories of singularities and equivalences between Landau-Ginzburg models, preprint math.AG/0503630. | Zbl

Cité par Sources :