This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into - known as the n-Hitchin component - to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains all -Hitchin components as well as the set of negatively curved metrics on the surface.
@article{PMIHES_2007__106__139_0, author = {Labourie, Fran\c{c}ois}, title = {Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {139--213}, publisher = {Springer}, volume = {106}, year = {2007}, doi = {10.1007/s10240-007-0009-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-007-0009-5/} }
TY - JOUR AU - Labourie, François TI - Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle JO - Publications Mathématiques de l'IHÉS PY - 2007 SP - 139 EP - 213 VL - 106 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-007-0009-5/ DO - 10.1007/s10240-007-0009-5 LA - en ID - PMIHES_2007__106__139_0 ER -
%0 Journal Article %A Labourie, François %T Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle %J Publications Mathématiques de l'IHÉS %D 2007 %P 139-213 %V 106 %I Springer %U http://archive.numdam.org/articles/10.1007/s10240-007-0009-5/ %R 10.1007/s10240-007-0009-5 %G en %F PMIHES_2007__106__139_0
Labourie, François. Cross ratios, surface groups, $PSL(n,\mathbf {R})$ and diffeomorphisms of the circle. Publications Mathématiques de l'IHÉS, Volume 106 (2007), pp. 139-213. doi : 10.1007/s10240-007-0009-5. http://archive.numdam.org/articles/10.1007/s10240-007-0009-5/
1. Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Tr. Mat. Inst. Steklova, vol. 90, 1967. | MR | Zbl
,2. The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Ser. A, 308 (1983), 523-615 | MR | Zbl
, ,3. The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162 | MR | Zbl
,4. Sur le birapport au bord des CAT(-1)-espaces, Publ. Math., Inst. Hautes Études Sci., 83 (1996), 95-104 | Numdam | MR | Zbl
,5. Maximal surface group representations in isometry groups of classical hermitian symmetric spaces, Geom. Dedicata, 122 (2006), 185-213 | MR | Zbl
, , ,6. Surface group representations and U(p,q)-Higgs bundles, J. Differ. Geom., 64 (2003), 111-170 | MR | Zbl
, , ,7. Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann., 328 (2004), 299-351 | MR | Zbl
, , ,8. Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., 1 (2005), 543-590 | MR
, , , ,9. Surface group representations with maximal Toledo invariant, C. R., Math., Acad. Sci. Paris, 336 (2003), 387-390 | MR | Zbl
, , ,10. Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 29-55. | MR | Zbl
,11. Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Études Sci., 103 (2006), 1-211 | Numdam | MR | Zbl
, ,12. Representations of the fundamental group of a closed oriented surface in Sp(4,ℝ), Topology, 43 (2004), 831-855 | MR | Zbl
, ,13. Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Éc. Norm. Supér., IV. Sér., 20 (1987), 251-270 | Numdam | Zbl
,14. The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), 200-225 | MR | Zbl
,15. Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85 (1986), 263-302 | MR | Zbl
,16. Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Symp. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43-96. | MR | Zbl
,17. Components of spaces of representations and stable triples, Topology, 40 (2001), 823-850 | MR | Zbl
,18. O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, to appear in J. Differ. Geom, (2005).
19. Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dyn. Syst., 17 (1997), 1061-1081 | MR | Zbl
,20. The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., III. Ser., 55 (1987), 59-126 | MR | Zbl
,21. Lie groups and Teichmüller space, Topology, 31 (1992), 449-473 | MR | Zbl
,22. F. Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, to appear in Ann. Sci. Éc. Norm. Supér., IV. Sér.
23. Anosov flows, surface groups and curves in projective space, Invent. Math., 165 (2006), 51-114 | MR | Zbl
,24. F. Labourie and G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, math.DG/0611245, 2006.
25. Structure au bord des variétés à courbure négative, Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994-1995, Sémin. Théor. Spectr. Géom., vol. 13, Univ. Grenoble I, Saint, 1995, pp. 97-122. | Numdam | MR | Zbl
,26. Simple geodesics and a series constant over Teichmüller space, Invent. Math., 132 (1998), 607-632 | MR | Zbl
,27. Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math. (2), 131 (1990), 151-162 | MR | Zbl
,28. Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Rev. Mat. Iberoam., 8 (1992), 441-456 | Zbl
,29. The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 627-635. | MR | Zbl
,Cited by Sources: