Perfectoid Spaces
Publications Mathématiques de l'IHÉS, Volume 116 (2012), pp. 245-313.

We introduce a certain class of so-called perfectoid rings and spaces, which give a natural framework for Faltings’ almost purity theorem, and for which there is a natural tilting operation which exchanges characteristic 0 and characteristic p. We deduce the weight-monodromy conjecture in certain cases by reduction to equal characteristic.

DOI: 10.1007/s10240-012-0042-x
Scholze, Peter 1

1 Mathematisches Institut, Universität Bonn53115, BonnGermany
@article{PMIHES_2012__116__245_0,
     author = {Scholze, Peter},
     title = {Perfectoid {Spaces}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {245--313},
     publisher = {Springer-Verlag},
     volume = {116},
     year = {2012},
     doi = {10.1007/s10240-012-0042-x},
     zbl = {1263.14022},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-012-0042-x/}
}
TY  - JOUR
AU  - Scholze, Peter
TI  - Perfectoid Spaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2012
DA  - 2012///
SP  - 245
EP  - 313
VL  - 116
PB  - Springer-Verlag
UR  - http://archive.numdam.org/articles/10.1007/s10240-012-0042-x/
UR  - https://zbmath.org/?q=an%3A1263.14022
UR  - https://doi.org/10.1007/s10240-012-0042-x
DO  - 10.1007/s10240-012-0042-x
LA  - en
ID  - PMIHES_2012__116__245_0
ER  - 
%0 Journal Article
%A Scholze, Peter
%T Perfectoid Spaces
%J Publications Mathématiques de l'IHÉS
%D 2012
%P 245-313
%V 116
%I Springer-Verlag
%U https://doi.org/10.1007/s10240-012-0042-x
%R 10.1007/s10240-012-0042-x
%G en
%F PMIHES_2012__116__245_0
Scholze, Peter. Perfectoid Spaces. Publications Mathématiques de l'IHÉS, Volume 116 (2012), pp. 245-313. doi : 10.1007/s10240-012-0042-x. http://archive.numdam.org/articles/10.1007/s10240-012-0042-x/

[1.] Berkovich, V. G. Spectral Theory and Analytic Geometry Over Non-Archimedean Fields, Mathematical Surveys and Monographs, Am. Math. Soc., Providence, 1990 | Zbl

[2.] Bosch, S.; Güntzer, U.; Remmert, R. Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1984 (A systematic approach to rigid analytic geometry) | DOI | Zbl

[3.] Bosch, S.; Lütkebohmert, W. Formal rigid geometry. I. Rigid spaces, Math. Ann., Volume 295 (1993), pp. 291-317 | DOI | MR | Zbl

[4.] Boyer, P. Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math., Volume 177 (2009), pp. 239-280 | DOI | MR | Zbl

[5.] Boyer, P. Conjecture de monodromie-poids pour quelques variétés de Shimura unitaires, Compos. Math., Volume 146 (2010), pp. 367-403 | DOI | MR | Zbl

[6.] A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J., to appear, . | arXiv

[7.] Dat, J.-F. Théorie de Lubin-Tate non-abélienne et représentations elliptiques, Invent. Math., Volume 169 (2007), pp. 75-152 | DOI | MR | Zbl

[8.] Jong, A. J. Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math., Volume 83 (1996), pp. 51-93 | DOI | Zbl

[9.] Deligne, P. Théorie de Hodge. I, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (1971), pp. 425-430 | Zbl

[10.] Deligne, P. La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math., Volume 52 (1980), pp. 137-252 | DOI | MR | Zbl

[11.] Faltings, G. p-adic Hodge theory, J. Amer. Math. Soc., Volume 1 (1988), pp. 255-299 | MR | Zbl

[12.] Faltings, G. Cohomologies p-adiques et applications arithmétiques, II, Almost étale extensions (Astérisque) (2002), pp. 185-270 | Numdam | Zbl

[13.] Fontaine, J.-M.; Wintenberger, J.-P. Extensions algébrique et corps des normes des extensions APF des corps locaux, C. R. Acad. Sci. Paris Sér. A-B, Volume 288 (1979), p. A441-A444 | MR | Zbl

[14.] O. Gabber and L. Ramero, Foundations of almost ring theory, http://math.univ-lille1.fr/~ramero/hodge.pdf. | Zbl

[15.] Gabber, O.; Ramero, L. Almost Ring Theory, Lecture Notes in Mathematics, Springer, Berlin, 2003 | Zbl

[16.] Harris, M.; Taylor, R. The Geometry and Cohomology of some Simple Shimura Varieties, Annals of Mathematics Studies, Princeton University Press, Princeton, 2001 (With an appendix by Vladimir G. Berkovich.) | Zbl

[17.] E. Hellmann, On arithmetic families of filtered φ-modules and crystalline representations, , 2011. | arXiv

[18.] Hochster, M. Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., Volume 142 (1969), pp. 43-60 | DOI | MR | Zbl

[19.] Huber, R. Continuous valuations, Math. Z., Volume 212 (1993), pp. 455-477 | DOI | MR | Zbl

[20.] Huber, R. A generalization of formal schemes and rigid analytic varieties, Math. Z., Volume 217 (1994), pp. 513-551 | DOI | MR | Zbl

[21.] Huber, R. A finiteness result for direct image sheaves on the étale site of rigid analytic varieties, J. Algebraic Geom., Volume 7 (1998), pp. 359-403 | MR | Zbl

[22.] Huber, R. Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, Vieweg, Braunschweig, 1996 | Zbl

[23.] Illusie, L. Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Springer, Berlin, 1971 | Zbl

[24.] Illusie, L. Complexe cotangent et déformations. II, Lecture Notes in Mathematics, Springer, Berlin, 1972 | Zbl

[25.] Illusie, L. Autour du théorème de monodromie locale, Périodes p-adiques (Astérisque) (1994), pp. 9-57 | Numdam | Zbl

[26.] Ito, T. Weight-monodromy conjecture for p-adically uniformized varieties, Invent. Math., Volume 159 (2005), pp. 607-656 | DOI | MR | Zbl

[27.] Ito, T. Weight-monodromy conjecture over equal characteristic local fields, Amer. J. Math., Volume 127 (2005), pp. 647-658 | DOI | MR | Zbl

[28.] K. Kedlaya and R. Liu, Relative p-adic Hodge theory, I: Foundations, http://math.mit.edu/~kedlaya/papers/relative-padic-Hodge1.pdf.

[29.] Quillen, D. On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math) (1970), pp. 65-87 | Zbl

[30.] Rapoport, M.; Zink, Th. Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math., Volume 68 (1982), pp. 21-101 | DOI | MR | Zbl

[31.] P. Scholze, p-adic Hodge theory for rigid-analytic varieties, , 2012. | arXiv | Zbl

[32.] Shin, S. W. Galois representations arising from some compact Shimura varieties, Ann. of Math. (2), Volume 173 (2011), pp. 1645-1741 | DOI | MR | Zbl

[33.] Tate, J. Rigid analytic spaces, Invent. Math., Volume 12 (1971), pp. 257-289 | DOI | MR | Zbl

[34.] Taylor, R.; Yoshida, T. Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc., Volume 20 (2007), pp. 467-493 | DOI | MR | Zbl

[35.] T. Terasoma, Monodromy weight filtration is independent of , , 1998. | arXiv

Cited by Sources: