Geometric Phantom Categories
Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 329-349.

In this paper we give a construction of phantom categories, i.e. admissible triangulated subcategories in bounded derived categories of coherent sheaves on smooth projective varieties that have trivial Hochschild homology and trivial Grothendieck group. We also prove that these phantom categories are phantoms in a stronger sense, namely, they has trivial K-motives and, hence, all their higher K-groups are trivial too.

DOI : 10.1007/s10240-013-0050-5
Gorchinskiy, Sergey 1 ; Orlov, Dmitri 2

1 Algebra and Number Theory Section, Steklov Mathematical Institute RAS Gubkin str. 8, Moscow, 119991 Russia
2 Algebraic Geometry Section, Steklov Mathematical Institute RAS Gubkin str. 8, Moscow, 119991 Russia
@article{PMIHES_2013__117__329_0,
     author = {Gorchinskiy, Sergey and Orlov, Dmitri},
     title = {Geometric {Phantom} {Categories}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {329--349},
     publisher = {Springer-Verlag},
     volume = {117},
     year = {2013},
     doi = {10.1007/s10240-013-0050-5},
     mrnumber = {3090263},
     zbl = {1285.14018},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-013-0050-5/}
}
TY  - JOUR
AU  - Gorchinskiy, Sergey
AU  - Orlov, Dmitri
TI  - Geometric Phantom Categories
JO  - Publications Mathématiques de l'IHÉS
PY  - 2013
SP  - 329
EP  - 349
VL  - 117
PB  - Springer-Verlag
UR  - http://archive.numdam.org/articles/10.1007/s10240-013-0050-5/
DO  - 10.1007/s10240-013-0050-5
LA  - en
ID  - PMIHES_2013__117__329_0
ER  - 
%0 Journal Article
%A Gorchinskiy, Sergey
%A Orlov, Dmitri
%T Geometric Phantom Categories
%J Publications Mathématiques de l'IHÉS
%D 2013
%P 329-349
%V 117
%I Springer-Verlag
%U http://archive.numdam.org/articles/10.1007/s10240-013-0050-5/
%R 10.1007/s10240-013-0050-5
%G en
%F PMIHES_2013__117__329_0
Gorchinskiy, Sergey; Orlov, Dmitri. Geometric Phantom Categories. Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 329-349. doi : 10.1007/s10240-013-0050-5. http://archive.numdam.org/articles/10.1007/s10240-013-0050-5/

[AO.] V. Alexeev and D. Orlov, Derived categories of Burniat surfaces and exceptional collections, preprint (2012), . | arXiv | MR | Zbl

[SGA6.] Berthelot, P.; Grothendieck, A.; Illusie, L. Théorie des intersections et théorème de Riemann–Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6) (Lecture Notes in Mathematics, 225) (1971) | Zbl

[Bl.] Bloch, S. Lectures on Algebraic Cycles, Duke Univ. Math. Series IV, 1980 | MR | Zbl

[BGS.] Ch. Böhning, H.-Ch. Graf von Bothmer, and P. Sosna, On the derived category of the classical Godeaux surface, preprint (2012), . | arXiv | Zbl

[BGKS.] Ch. Böhning, H.-Ch. Graf von Bothmer, L. Katzarkov, and P. Sosna, Determinantal Barlow surfaces and phantom categories, preprint (2012), . | arXiv

[BK1.] Bondal, A.; Kapranov, M. Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 53 (1989), pp. 1183-1205 (1337) | Zbl

[BK2.] Bondal, A.; Kapranov, M. Enhanced triangulated categories, Mat. Sb., Volume 181 (1990), pp. 669-683 | Zbl

[BO.] A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, preprint MPIM 95/15 (1995), . | arXiv

[Fu.] Fulton, W. Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 2, Springer, Berlin, 1984 | DOI | Zbl

[GS.] S. Galkin and E. Shinder, Exceptional collection on the Beauville surface, preprint (2012), . | arXiv

[GG.] Gorchinskiy, S.; Guletskii, V. Motives and representability of algebraic cycles on threefolds over a field, J. Algebr. Geom., Volume 21 (2012), pp. 347-373 | DOI | MR | Zbl

[IM.] Inose, H.; Mizukami, M. Rational equivalence of 0-cycles on some surfaces of general type with p g =0, Math. Ann., Volume 244 (1979), pp. 205-217 | DOI | MR | Zbl

[KMP.] Kahn, B.; Murre, J. P.; Pedrini, C. On the transcendental part of the motive of a surface, London Math. Soc. Lecture Notes Ser. (344), Cambridge University Press, Cambridge (2004), pp. 143-202 | Zbl

[Ke1.] Keller, B. Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra, Volume 123 (1998), pp. 223-273 | DOI | MR | Zbl

[Ke2.] Keller, B. On differential graded categories, International Congress of Mathematicians (II), Eur. Math. Soc., Zürich (2006), pp. 151-190 | Zbl

[KS.] Kontsevich, M.; Soibelman, Y. Notes on A -algebras, A -categories and non-commutative geometry, Homological Mirror Symmetry (Lecture Notes in Phys., 757), Springer, Berlin (2009), pp. 153-219 | DOI | Zbl

[Ku1.] A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, preprint (2009), . | arXiv

[Ku2.] A. Kuznetsov, Height of exceptional collections and Hochschild cohomology of quasiphantom categories, preprint (2012), . | arXiv

[LO.] Lunts, V.; Orlov, D. Uniqueness of enhancement for triangulated categories, J. Am. Math. Soc., Volume 23 (2010), pp. 853-908 | DOI | MR | Zbl

[LS.] V. A. Lunts and O. M. Schnürer, Smoothness of equivariant derived categories, preprint (2012), . | arXiv | Zbl

[Ma.] Manin, Yu. I. Correspondences, motifs and monoidal transformations, Math. USSR Sb., Volume 6 (1968), pp. 439-470 | DOI | Zbl

[MT.] M. Marcolli and G. Tabuada, From exceptional collections to motivic decompositions via noncommutative motives, preprint (2012), . | arXiv

[MS.] Merkurjev, A. S.; Suslin, A. A. K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR, Izv., Volume 21 (1983), pp. 307-340 | DOI | Zbl

[Or.] Orlov, D. Derived categories of coherent sheaves and equivalences between them, Russ. Math. Surv., Volume 58 (2003), pp. 511-591 | DOI | Zbl

[Qu.] Quillen, D. Algebraic K-theory I, Lect. Notes Math., Volume 341 (1973), pp. 85-147 | DOI | MR | Zbl

[Sch.] Scholl, A. Classical motives, Proc. Sympos. Pure Math. (55), Am. Math. Soc., Providence (1994), pp. 163-187 | Zbl

[Ta.] Tabuada, G. Invariants additifs de dg-catégories, Int. Math. Res. Not., Volume 53 (2005), pp. 3309-3339 | DOI | MR | Zbl

[To.] Toën, B. The homotopy theory of dg-categories and derived Morita theory, Invent. Math., Volume 167 (2007), pp. 615-667 | DOI | MR | Zbl

[TV.] Toën, B.; Vaquié, M. Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007), pp. 387-444 | Zbl

Cité par Sources :