We construct a representation of the affine W-algebra of on the equivariant homology space of the moduli space of U r -instantons, and we identify the corresponding module. As a corollary, we give a proof of a version of the AGT conjecture concerning pure N=2 gauge theory for the group SU(r).
Our approach uses a deformation of the universal enveloping algebra of W 1+∞, which acts on the above homology space and which specializes to for all r. This deformation is constructed from a limit, as n tends to ∞, of the spherical degenerate double affine Hecke algebra of GL n .
@article{PMIHES_2013__118__213_0, author = {Schiffmann, O. and Vasserot, E.}, title = {Cherednik algebras, {W-algebras} and the equivariant cohomology of the moduli space of instantons on {<strong>A</strong> \protect\textsuperscript{2}}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {213--342}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {118}, year = {2013}, doi = {10.1007/s10240-013-0052-3}, mrnumber = {3150250}, zbl = {1284.14008}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-013-0052-3/} }
TY - JOUR AU - Schiffmann, O. AU - Vasserot, E. TI - Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A 2 JO - Publications Mathématiques de l'IHÉS PY - 2013 SP - 213 EP - 342 VL - 118 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-013-0052-3/ DO - 10.1007/s10240-013-0052-3 LA - en ID - PMIHES_2013__118__213_0 ER -
%0 Journal Article %A Schiffmann, O. %A Vasserot, E. %T Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A 2 %J Publications Mathématiques de l'IHÉS %D 2013 %P 213-342 %V 118 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-013-0052-3/ %R 10.1007/s10240-013-0052-3 %G en %F PMIHES_2013__118__213_0
Schiffmann, O.; Vasserot, E. Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A 2. Publications Mathématiques de l'IHÉS, Tome 118 (2013), pp. 213-342. doi : 10.1007/s10240-013-0052-3. http://archive.numdam.org/articles/10.1007/s10240-013-0052-3/
[1.] Liouville correlation functions from four dimensional gauge theories, Lett. Math. Phys., Volume 91 (2010), pp. 167-197 | DOI | MR | Zbl
[2.] Representation theory of W-algebras, Invent. Math., Volume 169 (2007), pp. 219-320 | DOI | MR | Zbl
[3.] Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differ. Geom., Volume 55 (2000), pp. 193-227 | MR | Zbl
[4.] Cherednik algebras and differential operators on quasi-invariants, Duke Math. J., Volume 118 (2003), pp. 279-337 | DOI | MR | Zbl
[5.] Equivariant Sheaves and Functors, Lecture Notes in Mathematics, 1578, Springer, Berlin, 1994 | MR | Zbl
[6.] Introduction to W-algebras, String Theory and Quantum Gravity, World Scientific, River Edge (1992), pp. 245-280 | MR
[7.] A finite analog of the AGT relation I: finite W-algebras and quasimaps’ spaces, Commun. Math. Phys., Volume 308 (2011), pp. 457-478 | DOI | MR | Zbl
[8.] On the Hall algebra of an elliptic curve, I, Duke Math. J., Volume 161 (2012), pp. 1171-1231 | DOI | MR | Zbl
[9.] Cellular decompositions for nested Hilbert schemes of points, Pac. J. Math., Volume 183 (1998), pp. 39-90 | DOI | MR | Zbl
[10.] Double Affine Hecke Algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[11.] Representation Theory and Complex Geometry, Birkhaüser, Basel, 1996 | MR | Zbl
[12.] On the homology of the Hilbert scheme of points in the plane, Invent. Math., Volume 87 (1987), pp. 343-352 | DOI | MR | Zbl
[13.] A. V. Fateev and V. A. Litvinov, Integrable structure, W-symmetry and AGT relation, preprint (2011). | arXiv | MR
[14.] Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Mod. Phys., Volume A7 (1992), pp. 197-215 | DOI | MR | Zbl
[15.] Integrals of motion and quantum groups, Proceedings of the C.I.M.E. School Integrable Systems and Quantum Groups (Lect. Notes in Math., 1620), Springer, Berlin (1995), pp. 349-418 | DOI | MR | Zbl
[16.] Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Am. Math. Soc., Providence, 2004 | MR | Zbl
[17.] W 1+∞ and with central charge N , Commun. Math. Phys., Volume 170 (1995), pp. 337-357 | DOI | MR | Zbl
[18.] D. Gaiotto, Asymptotically free N=2 theories and irregular conformal blocks, (2009). | arXiv
[19.] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., Volume 131 (1998), pp. 25-83 | DOI | MR | Zbl
[20.] Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett., Volume 3 (1996), pp. 275-291 | DOI | MR | Zbl
[21.] Vertex Algebras for Beginners, University Lecture Series, 10, Am. Math. Soc., Providence, 1998 | MR | Zbl
[22.] Eisenstein series and quantum affine algebras. Algebraic geometry, 7, J. Math. Sci. (N.Y.), Volume 84 (1997), pp. 1311-1360 | DOI | MR | Zbl
[23.] Quantum Groups, Graduate Texts in Mathematics, 155, Springer, New York, 1995 | DOI | MR | Zbl
[24.] Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves, Sel. Math., Volume 16 (2010), pp. 201-240 | DOI | MR | Zbl
[25.] Symmetric Functions and Hall Polynomials, Oxford Math. Mon., 1995 | MR | Zbl
[26.] Tensor product varieties and crystals: The ADE case, Duke Math. J., Volume 116 (2003), pp. 477-524 | DOI | MR | Zbl
[27.] Quasi-Finite Algebras Graded by Hamiltonian and Vertex Operator Algebras, Moonshine: The First Quarter Century and Beyond, London Math. Soc. Lecture Note Ser., 372, Cambridge Univ. Press, Cambridge, 2010, pp. 282-329 | MR | Zbl
[28.] D. Maulik and A. Okounkov, Quantum cohomology and quantum groups, (2012). | arXiv
[29.] Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2), Volume 145 (1997), pp. 379-388 | DOI | MR | Zbl
[30.] Quiver varieties and tensor products, Invent. Math., Volume 146 (2001), pp. 399-449 | DOI | MR | Zbl
[31.] Instanton counting on blowup. I. 4-Dimensional pure gauge theory, Invent. Math., Volume 162 (2005), pp. 313-355 | DOI | MR | Zbl
[32.] The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math., Volume 147 (2011), pp. 188-234 | DOI | MR | Zbl
[33.] The elliptic Hall algebra and the K-theory of the Hilbert scheme of A 2 , Duke Math J., Volume 162 (2013), pp. 279-366 | DOI | MR | Zbl
[34.] Zonal spherical functions on some symmetric spaces, Publ. Res. Inst. Math. Sci., Volume 12 (1977), pp. 455-459 | DOI | MR | Zbl
[35.] Some combinatorial properties of Jack symmetric functions, Adv. Math., Volume 77 (1989), pp. 76-115 | DOI | MR | Zbl
[36.] Rational and trigonometric degeneration of the double affine Hecke algebra of type A , Int. Math. Res. Not., Volume 37 (2005), pp. 2249-2262 | DOI | MR | Zbl
[37.] On the K-theory of the cyclic quiver variety, Int. Math. Res. Not., Volume 18 (1999), pp. 1005-1028 | DOI | MR | Zbl
[38.] Standard modules of quantum affine algebras, Duke Math. J., Volume 111 (2002), pp. 509-533 | DOI | MR | Zbl
[39.] Finite dimensional representations of DAHA and affine Springer fibers: the spherical case, Duke Math. J., Volume 147 (2007), pp. 439-540 | DOI | MR | Zbl
[40.] Sur l’anneau de cohomologie du schéma de Hilbert de C 2 , C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001), pp. 7-12 | DOI | MR | Zbl
[41.] The Classical Groups, Their Invariants and Representations, Princeton University Press, Princeton, 1949 | JFM | MR | Zbl
Cité par Sources :