K - and L -theory of group rings over G L n ( 𝐙 )
Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 97-125.

We prove the K - and L -theoretic Farrell-Jones Conjecture (with coefficients in additive categories) for G L n ( 𝐙 )

DOI : https://doi.org/10.1007/s10240-013-0055-0
MANUSCRIPT : 55
PUBLISHER-ID : s10240-013-0055-0
Mots clés : Abelian Group, Volume Function, Group Ring, Cyclic Subgroup, Wreath Product
@article{PMIHES_2014__119__97_0,
     author = {Bartels, Arthur and L\"uck, Wolfgang and Reich, Holger and R\"uping, Henrik},
     title = {$K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {97--125},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {119},
     year = {2014},
     doi = {10.1007/s10240-013-0055-0},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-013-0055-0/}
}
TY  - JOUR
AU  - Bartels, Arthur
AU  - Lück, Wolfgang
AU  - Reich, Holger
AU  - Rüping, Henrik
TI  - $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
DA  - 2014///
SP  - 97
EP  - 125
VL  - 119
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://archive.numdam.org/articles/10.1007/s10240-013-0055-0/
UR  - https://doi.org/10.1007/s10240-013-0055-0
DO  - 10.1007/s10240-013-0055-0
LA  - en
ID  - PMIHES_2014__119__97_0
ER  - 
Bartels, Arthur; Lück, Wolfgang; Reich, Holger; Rüping, Henrik. $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 97-125. doi : 10.1007/s10240-013-0055-0. http://archive.numdam.org/articles/10.1007/s10240-013-0055-0/

[1.] A. Bartels, T. Farrell, and W. Lück, The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. | arXiv:1101.0469v1

[2.] Bartels, A.; Lück, W. On twisted group rings with twisted involutions, their module categories and L-theory, Cohomology of Groups and Algebraic K-Theory (2009), pp. 1-55 | MR 2655174 | Zbl 1205.19006

[3.] Bartels, A.; Lück, W. Geodesic flow for CAT(0)-groups, Geom. Topol., Volume 16 (2012), pp. 1345-1391 | Article | MR 2967054 | Zbl 1263.37052

[4.] Bartels, A.; Lück, W. The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. Math. (2), Volume 175 (2012), pp. 631-689 | Article | MR 2993750 | Zbl 1256.57021

[5.] Bartels, A.; Lück, W.; Reich, H. The K-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008), pp. 29-70 | Article | MR 2385666 | Zbl 1143.19003

[6.] Bartels, A.; Lück, W.; Reich, H. On the Farrell-Jones conjecture and its applications, Topology, Volume 1 (2008), pp. 57-86 | Article | MR 2365652 | Zbl 1141.19002

[7.] Bartels, A.; Reich, H. Coefficients for the Farrell-Jones conjecture, Adv. Math., Volume 209 (2007), pp. 337-362 | Article | MR 2294225 | Zbl 1161.19003

[8.] Bridson, M. R.; Haefliger, A. Metric Spaces of Non-Positive Curvature (1999) | MR 1744486 | Zbl 0988.53001

[9.] Brown, K. S. Cohomology of Groups (1982) | MR 672956 | Zbl 0584.20036

[10.] Davis, J. F.; Quinn, F.; Reich, H. Algebraic K-theory over the infinite dihedral group: a controlled topology approach, Topology, Volume 4 (2011), pp. 505-528 | Article | MR 2832565 | Zbl 1227.19004

[11.] Dixon, J. D.; Mortimer, B. Permutation Groups (1996) | MR 1409812 | Zbl 0951.20001

[12.] Eberlein, P. B. Geometry of Nonpositively Curved Manifolds (1996) | MR 1441541 | Zbl 0883.53003

[13.] Farrell, F. T.; Jones, L. E. Isomorphism conjectures in algebraic K-theory, J. Am. Math. Soc., Volume 6 (1993), pp. 249-297 | MR 1179537 | Zbl 0798.57018

[14.] Farrell, F. T.; Jones, L. E. Rigidity for aspherical manifolds with π1⊂GLm(R), Asian J. Math., Volume 2 (1998), pp. 215-262 | MR 1639544 | Zbl 0912.57012

[15.] Farrell, F. T.; Roushon, S. K. The Whitehead groups of braid groups vanish, Int. Math. Res. Not., Volume 10 (2000), pp. 515-526 | Article | MR 1759505 | Zbl 0985.20024

[16.] Grayson, D. R. Reduction theory using semistability, Comment. Math. Helv., Volume 59 (1984), pp. 600-634 | Article | MR 780079 | Zbl 0564.20027

[17.] Griffiths, P.; Harris, J. Principles of Algebraic Geometry (1978) | MR 507725 | Zbl 0408.14001

[18.] Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces (1978) | MR 514561 | Zbl 0451.53038

[19.] P. Kühl, Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint, | arXiv:0907.0729v1

[20.] Lück, W. Survey on classifying spaces for families of subgroups, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (2005), pp. 269-322 | MR 2195456 | Zbl 1117.55013

[21.] Lück, W.; Reich, H. The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, Handbook of K-Theory, vols. 1, 2 (2005), pp. 703-842 | MR 2181833 | Zbl 1120.19001

[22.] Neukirch, J. Algebraic Number Theory (1999) | MR 1697859 | Zbl 0956.11021

[23.] Roushon, S. K. The Farrell-Jones isomorphism conjecture for 3-manifold groups, K-Theory, Volume 1 (2008), pp. 49-82 | MR 2424566 | Zbl 1160.57018

[24.] Wegner, C. The K-theoretic Farrell-Jones conjecture for CAT(0)-groups, Proc. Am. Math. Soc., Volume 140 (2012), pp. 779-793 | Article | MR 2869063 | Zbl 1240.19003

Cité par Sources :