On the inverse spectral problem for the quasi-periodic Schrödinger equation
Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 217-401.

We study the quasi-periodic Schrödinger equation

-ψ''(x)+V(x)ψ(x)=Eψ(x),x𝐑
in the regime of “small” V. Let (Em',Em''), m𝐙ν, be the standard labeled gaps in the spectrum. Our main result says that if ∈ Em''-Em'εexp(-κ0|m|) for all m𝐙ν, with ε being small enough, depending on κ0>0 and the frequency vector involved, then the Fourier coefficients of V obey |c(m)|ε1/2exp(-κ02|m|) for all m𝐙ν. On the other hand we prove that if |c(m)|≤εexp(−κ0|m|) with ε being small enough, depending on κ0>0 and the frequency vector involved, then Em''-Em'2εexp(-κ02|m|).

DOI : 10.1007/s10240-013-0058-x
Mots-clés : Implicit Function Theorem, Inductive Assumption, Simple Eigenvalue, Principal Point, Inverse Spectral Problem
Damanik, David 1 ; Goldstein, Michael 2

1 Department of Mathematics, Rice University 6100 S. Main St. 77005-1892 Houston TX USA
2 Department of Mathematics, University of Toronto Bahen Centre, 40 St. George St. M5S 2E4 Toronto Ontario Canada
@article{PMIHES_2014__119__217_0,
     author = {Damanik, David and Goldstein, Michael},
     title = {On the inverse spectral problem for the quasi-periodic {Schr\"odinger} equation},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {217--401},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {119},
     year = {2014},
     doi = {10.1007/s10240-013-0058-x},
     mrnumber = {3210179},
     zbl = {1296.35168},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-013-0058-x/}
}
TY  - JOUR
AU  - Damanik, David
AU  - Goldstein, Michael
TI  - On the inverse spectral problem for the quasi-periodic Schrödinger equation
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 217
EP  - 401
VL  - 119
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-013-0058-x/
DO  - 10.1007/s10240-013-0058-x
LA  - en
ID  - PMIHES_2014__119__217_0
ER  - 
%0 Journal Article
%A Damanik, David
%A Goldstein, Michael
%T On the inverse spectral problem for the quasi-periodic Schrödinger equation
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 217-401
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-013-0058-x/
%R 10.1007/s10240-013-0058-x
%G en
%F PMIHES_2014__119__217_0
Damanik, David; Goldstein, Michael. On the inverse spectral problem for the quasi-periodic Schrödinger equation. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 217-401. doi : 10.1007/s10240-013-0058-x. https://www.numdam.org/articles/10.1007/s10240-013-0058-x/

[Av1] A. Avila, Global theory of one-frequency Schrödinger operators I: stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity, preprint (2009), | arXiv

[Av2] A. Avila, Global theory of one-frequency Schrödinger operators II: acriticality and finiteness of phase transitions for typical potentials, preprint. | MR

[Av3] A. Avila, Almost reducibility and absolute continuity I, preprint (2010), | arXiv

[Bo] Bourgain, J. Green’s Function Estimates for Lattice Schrödinger Operators and Applications (2004) | MR | Zbl

[BoJi] Bourgain, J.; Jitomirskaya, S. Absolutely continuous spectrum for 1D quasi-periodic operators, Invent. Math., Volume 148 (2002), pp. 453-463 | DOI | MR | Zbl

[DiSi] Dinaburg, E. I.; Sinai, Y. G. The one dimensional Schrödinger equation with quasiperiodic potential, Funkc. Anal. Prilozh., Volume 9 (1975), pp. 8-21 | Zbl

[DG] D. Damanik and M. Goldstein, On the existence and uniqueness of global solutions of the KdV equation with quasi-periodic initial data, preprint (2012), | arXiv

[El] Eliasson, H. Floquet solutions for the 1-dimensional quasiperiodic Schrödinger equation, Commun. Math. Phys., Volume 146 (1992), pp. 447-482 | DOI | Zbl

[EK] Eliasson, H.; Kuksin, S. KAM for the non-linear Schrödinger equation, Ann. Math., Volume 172 (2010), pp. 371-435 | DOI | Zbl

[FrSp] Fröhlich, J.; Spencer, T. Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., Volume 88 (1983), pp. 151-189 | DOI | Zbl

[FSW] Fröhlich, J.; Spencer, T.; Wittwer, P. Localization for a class of one dimensional quasi-periodic Schrödinger operators, Commun. Math. Phys., Volume 132 (1990), pp. 5-25 | DOI | Zbl

[HA] Hadj Amor, S. Hölder continuity of the rotation number for quasi-periodic co-cycles in SL(2,R), Commun. Math. Phys., Volume 287 (2009), pp. 565-588 | DOI | Zbl

[Lax] Lax, P. Integrals of non-linear equations of evolution and solitary waves, Commun. Pure Appl. Math., Volume 21 (1968), pp. 467-490 | DOI | Zbl

  • Eichinger, Benjamin; Lukić, Milivoje Stahl–Totik regularity for continuum Schrödinger operators, Analysis PDE, Volume 18 (2025) no. 3, p. 591 | DOI:10.2140/apde.2025.18.591
  • ZHAO, HAOXI; CHENG, HONGYU Time almost periodicity for solutions of Toda lattice equation with almost periodic initial datum, Ergodic Theory and Dynamical Systems (2025), p. 1 | DOI:10.1017/etds.2024.138
  • He, Jiawei; Hou, Xuanji; Shan, Yuan; You, Jiangong Explicit construction of quasi-periodic analytic Schrödinger operators with cantor spectrum, Mathematische Annalen, Volume 391 (2025) no. 1, p. 179 | DOI:10.1007/s00208-024-02918-5
  • Damanik, David; Li, Yong; Xu, Fei Local existence and uniqueness of spatially quasi-periodic solutions to the generalized KdV equation, Journal de Mathématiques Pures et Appliquées, Volume 186 (2024), p. 251 | DOI:10.1016/j.matpur.2024.04.007
  • Damanik, David; Li, Yong; Xu, Fei The quasi-periodic Cauchy problem for the generalized Benjamin-Bona-Mahony equation on the real line, Journal of Functional Analysis, Volume 286 (2024) no. 3, p. 110238 | DOI:10.1016/j.jfa.2023.110238
  • Sedov, K. S.; Fedotov, A. A. On Monodromy Matrices for a Difference Schrödinger Equation on the Real Line with a Small Periodic Potential, Journal of Mathematical Sciences, Volume 283 (2024) no. 4, p. 650 | DOI:10.1007/s10958-024-07298-4
  • Li, Xianzhe Quantitative reducibility of Gevrey quasi-periodic cocycles and its applications, Nonlinearity, Volume 35 (2022) no. 12, p. 6124 | DOI:10.1088/1361-6544/ac98ed
  • Shi, Yunfeng Absence of Eigenvalues of Analytic Quasi-Periodic Schrödinger Operators on Rd, Communications in Mathematical Physics, Volume 386 (2021) no. 3, p. 1413 | DOI:10.1007/s00220-021-04174-z
  • Cai, Ao; Wang, Xueyin Polynomial decay of the gap length for C quasi-periodic Schrödinger operators and spectral application, Journal of Functional Analysis, Volume 281 (2021) no. 3, p. 109035 | DOI:10.1016/j.jfa.2021.109035
  • Lukić, Milivoje; Young, Giorgio Uniqueness of solutions of the KdV-hierarchy via Dubrovin-type flows, Journal of Functional Analysis, Volume 279 (2020) no. 7, p. 108705 | DOI:10.1016/j.jfa.2020.108705
  • Hou, Xuanji; Shan, Yuan; You, Jiangong Construction of QuasiPeriodic Schrödinger Operators with Cantor Spectrum, Annales Henri Poincaré, Volume 20 (2019) no. 11, p. 3563 | DOI:10.1007/s00023-019-00846-8
  • Parnovski, Leonid; Shterenberg, Roman Perturbation Theory for Almost-Periodic Potentials I: One-Dimensional Case, Communications in Mathematical Physics, Volume 366 (2019) no. 3, p. 1229 | DOI:10.1007/s00220-019-03329-3
  • Shi, Yunfeng; Yuan, Xiaoping Exponential Decay of the Lengths of the Spectral Gaps for the Extended Harper’s Model with a Liouvillean Frequency, Journal of Dynamics and Differential Equations, Volume 31 (2019) no. 4, p. 1921 | DOI:10.1007/s10884-018-9644-4
  • Binder, Ilia; Damanik, David; Goldstein, Michael; Lukic, Milivoje Almost periodicity in time of solutions of the KdV equation, Duke Mathematical Journal, Volume 167 (2018) no. 14 | DOI:10.1215/00127094-2018-0015
  • Binder, Ilia; Kinzebulatov, Damir; Voda, Mircea Non-Perturbative Localization with Quasiperiodic Potential in Continuous Time, Communications in Mathematical Physics, Volume 351 (2017) no. 3, p. 1149 | DOI:10.1007/s00220-016-2723-7
  • Damanik, David; Goldstein, Michael; Lukic, Milivoje The isospectral torus of quasi-periodic Schrödinger operators via periodic approximations, Inventiones mathematicae, Volume 207 (2017) no. 2, p. 895 | DOI:10.1007/s00222-016-0679-z
  • Damanik, David; Yuditskii, Peter Counterexamples to the Kotani–Last conjecture for continuum Schrödinger operators via character-automorphic Hardy spaces, Advances in Mathematics, Volume 293 (2016), p. 738 | DOI:10.1016/j.aim.2016.02.023
  • Parnovski, Leonid; Shterenberg, Roman Complete asymptotic expansion of the spectral function of multidimensional almost-periodic Schrödinger operators, Duke Mathematical Journal, Volume 165 (2016) no. 3 | DOI:10.1215/00127094-3166415
  • Damanik, David; Goldstein, Michael; Lukic, Milivoje A multi-scale analysis scheme on Abelian groups with an application to operators dual to Hill’s equation, Transactions of the American Mathematical Society, Volume 369 (2016) no. 3, p. 1689 | DOI:10.1090/tran/6712
  • Damanik, David; Goldstein, Michael On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data, Journal of the American Mathematical Society, Volume 29 (2015) no. 3, p. 825 | DOI:10.1090/jams/837

Cité par 20 documents. Sources : Crossref