We study the Fourier-Mukai transform for holonomic D-modules on complex abelian varieties. Among other things, we show that the cohomology support loci of a holonomic D-module are finite unions of linear subvarieties, which go through points of finite order for objects of geometric origin; that the standard t-structure on the derived category of holonomic complexes corresponds, under the Fourier-Mukai transform, to a certain perverse coherent t-structure in the sense of Kashiwara and Arinkin-Bezrukavnikov; and that Fourier-Mukai transforms of simple holonomic D-modules are intersection complexes in this t-structure. This supports the conjecture that Fourier-Mukai transforms of holonomic D-modules are “hyperkähler perverse sheaves”.
@article{PMIHES_2015__121__1_0, author = {Schnell, Christian}, title = {Holonomic {D-modules} on abelian varieties}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--55}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {121}, year = {2015}, doi = {10.1007/s10240-014-0061-x}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-014-0061-x/} }
TY - JOUR AU - Schnell, Christian TI - Holonomic D-modules on abelian varieties JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 1 EP - 55 VL - 121 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-014-0061-x/ DO - 10.1007/s10240-014-0061-x LA - en ID - PMIHES_2015__121__1_0 ER -
%0 Journal Article %A Schnell, Christian %T Holonomic D-modules on abelian varieties %J Publications Mathématiques de l'IHÉS %D 2015 %P 1-55 %V 121 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-014-0061-x/ %R 10.1007/s10240-014-0061-x %G en %F PMIHES_2015__121__1_0
Schnell, Christian. Holonomic D-modules on abelian varieties. Publications Mathématiques de l'IHÉS, Tome 121 (2015), pp. 1-55. doi : 10.1007/s10240-014-0061-x. http://archive.numdam.org/articles/10.1007/s10240-014-0061-x/
[Ara92] Higgs line bundles, Green-Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull., New Ser., Am. Math. Soc., Volume 26 (1992), pp. 310-314 | DOI | MR | Zbl
[AB10] Perverse coherent sheaves, Mosc. Math. J., Volume 10 (2010), pp. 3-29 | MR | Zbl
[BS94] Stable Sheaves and Einstein-Hermitian Metrics (1994), pp. 39-50
[BBD82] Faisceaux pervers, Analysis and Topology on Singular Spaces, I (1982), pp. 5-171
[Bon10] Autodual connection in the Fourier transform of a Higgs bundle, Asian J. Math., Volume 14 (2010), pp. 153-173 | DOI | MR | Zbl
[Dim04] Sheaves in Topology (2004) (xvi+236) | DOI | Zbl
[FK00] The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on semiabelian varieties, Duke Math. J., Volume 104 (2000), pp. 171-180 | DOI | MR | Zbl
[GL87] Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math., Volume 90 (1987), pp. 389-407 | DOI | MR | Zbl
[GL91] Higher obstructions to deforming cohomology groups of line bundles, J. Am. Math. Soc., Volume 1 (1991), pp. 87–103-103 | MR
[Hac08] A derived category approach to generic vanishing, J. Reine Angew. Math., Volume 575 (2004), pp. 173-187 | MR | Zbl
[HTT08] D-Modules, Perverse Sheaves, and Representation Theory (2008) (xii+407) | DOI | Zbl
[Jar02] Nahm transform and spectral curves for doubly-periodic instantons, Commun. Math. Phys., Volume 225 (2002), pp. 639-668 | DOI | MR | Zbl
[Kas04] t-structures on the derived categories of holonomic D-modules and coherent 𝒪-modules, Mosc. Math. J., Volume 4 (2004), pp. 847-868 | MR | Zbl
[KW11] T. Krämer and R. Weissauer, Vanishing theorems for constructible sheaves on abelian varieties, | arXiv
[Lau96] G. Laumon, Transformation de Fourier généralisée, | arXiv
[Mal04] On irregular holonomic D-modules, Éléments de la théorie des systèmes différentiels géométriques (2004), pp. 391-410
[MM74] Universal Extensions and One Dimensional Crystalline Cohomology (1974) | Zbl
[Moc10] T. Mochizuki, Holonomic D-module with Betti structure, | arXiv
[Moc11] T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Astérisque, 340 (2011).
[Moc13] T. Mochizuki, Asymptotic behaviour and the Nahm transform of doubly periodic instantons with square integrable curvature, | arXiv
[Muk81] Duality between D(X) and with its application to Picard sheaves, Nagoya Math. J., Volume 81 (1981), pp. 153-175 | MR | Zbl
[PR01] Fourier transform for D-algebras. I, Duke Math. J., Volume 109 (2001), pp. 123-146 | DOI | MR | Zbl
[Pop12] Generic vanishing filtrations and perverse objects in derived categories of coherent sheaves, Derived Categories in Algebraic Geometry (2012), pp. 251-278
[PS14] Kodaira dimension and zeros of holomorphic one-forms, Ann. Math., Volume 179 (2014), pp. 1-12 | DOI | MR
[PS13] M. Popa and C. Schnell, Generic vanishing theory via mixed Hodge modules, Forum Math., Sigma, 1, e1, 60pp (2013). doi:. | DOI
[Rot96] Sheaves with connection on abelian varieties, Duke Math. J., Volume 84 (1996), pp. 565-598 | DOI | MR | Zbl
[Sab13] Théorie de Hodge et correspondance de Kobayashi-Hitchin sauvages (d’après T. Mochizuki), Astérisque, Volume 352 (2013), pp. 201-243 (Séminaire Bourbaki. Vol. 2011/2012, Exposés 1043–1058)
[Sai88] Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., Volume 24 (1988), pp. 849-995 | DOI | MR | Zbl
[Sai90] Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990), pp. 221-333 | DOI | MR | Zbl
[Sai91] Hodge conjecture and mixed motives. I, Complex Geometry and Lie Theory (1991), pp. 283-303 | DOI
[Sch13] C. Schnell, Torsion points on cohomology support loci: from D-modules to Simpson’s theorem, 2013, to appear in Recent Advances in Algebraic Geometry (Ann Arbor, 2013). | arXiv
[Sim93] Subspaces of moduli spaces of rank one local systems, Ann. Sci. Éc. Norm. Super., Volume 26 (1993), pp. 361-401 | Numdam | Zbl
[Wat60] Intrinsic characterizations of some additive functors, Proc. Am. Math. Soc., Volume 11 (1960), pp. 5-8 | DOI | MR | Zbl
[Wei12] R. Weissauer, Degenerate perverse sheaves on abelian varieties, | arXiv
Cité par Sources :