A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and Out(Fn). As an application, we show that mapping class groups act on finite products of δ-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension.
@article{PMIHES_2015__122__1_0, author = {Bestvina, Mladen and Bromberg, Ken and Fujiwara, Koji}, title = {Constructing group actions on quasi-trees and applications to mapping class groups}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--64}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {122}, year = {2015}, doi = {10.1007/s10240-014-0067-4}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-014-0067-4/} }
TY - JOUR AU - Bestvina, Mladen AU - Bromberg, Ken AU - Fujiwara, Koji TI - Constructing group actions on quasi-trees and applications to mapping class groups JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 1 EP - 64 VL - 122 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-014-0067-4/ DO - 10.1007/s10240-014-0067-4 LA - en ID - PMIHES_2015__122__1_0 ER -
%0 Journal Article %A Bestvina, Mladen %A Bromberg, Ken %A Fujiwara, Koji %T Constructing group actions on quasi-trees and applications to mapping class groups %J Publications Mathématiques de l'IHÉS %D 2015 %P 1-64 %V 122 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-014-0067-4/ %R 10.1007/s10240-014-0067-4 %G en %F PMIHES_2015__122__1_0
Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji. Constructing group actions on quasi-trees and applications to mapping class groups. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 1-64. doi : 10.1007/s10240-014-0067-4. http://archive.numdam.org/articles/10.1007/s10240-014-0067-4/
[AK11] Strongly contracting geodesics in outer space, Geom. Topol., Volume 15 (2011), pp. 2181-2234 | DOI | MR | Zbl
[AKB12] Asymmetry of outer space, Geom. Dedic., Volume 156 (2012), pp. 81-92 | DOI | MR | Zbl
[BaBr] Orbihedra of nonpositive curvature, Publ. Math. IHÉS, Volume 82 (1995), pp. 169-209 (1996) | DOI | Numdam | MR | Zbl
[Beh06] Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol., Volume 10 (2006), pp. 1523-1578 | DOI | MR | Zbl
[BC12] Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., Volume 352 (2012), pp. 339-356 | DOI | MR | Zbl
[BDS11a] Addendum: median structures on asymptotic cones and homomorphisms into mapping class groups [mr2783135], Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 555-562 | DOI | MR | Zbl
[BDS11b] Median structures on asymptotic cones and homomorphisms into mapping class groups, Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 503-554 | DOI | MR | Zbl
[BM08] Dimension and rank for mapping class groups, Ann. Math. (2), Volume 167 (2008), pp. 1055-1077 | DOI | MR | Zbl
[BD06] A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Am. Math. Soc., Volume 358 (2006), pp. 4749-4764 (electronic) | DOI | MR | Zbl
[BD08] Asymptotic dimension, Topol. Appl., Volume 155 (2008), pp. 1265-1296 | DOI | MR | Zbl
[BelF08] The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2), Volume 77 (2008), pp. 33-50 | DOI | MR | Zbl
[Bes11] A Bers-like proof of the existence of train tracks for free group automorphisms, Fundam. Math., Volume 214 (2011), pp. 1-12 | DOI | MR | Zbl
[BB] M. Bestvina and K. Bromberg, On the asymptotic dimension of a curve complex, preprint (2014).
[BBFa] M. Bestvina, K. Bromberg, and K. Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces, | arXiv
[BBFb] M. Bestvina, K. Bromberg, and K. Fujiwara, Projection complexes, acylindrically hyperbolic groups and bounded cohomology, preprint (2014).
[BBFc] M. Bestvina, K. Bromberg, and K. Fujiwara, Stable commutator length on mapping class groups, | arXiv
[BFe14a] Hyperbolicity of the complex of free factors, Adv. Math., Volume 256 (2014), pp. 104-155 | DOI | MR | Zbl
[BFe14b] Subfactor projections, J. Topol., Volume 7 (2014), pp. 771-804 | DOI | MR | Zbl
[BF02] Bounded cohomology of subgroups of mapping class groups, Geom. Topol., Volume 6 (2002), pp. 69-89 (electronic) | DOI | MR | Zbl
[BF09] A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal., Volume 19 (2009), pp. 11-40 | DOI | MR | Zbl
[Bow08] Tight geodesics in the curve complex, Invent. Math., Volume 171 (2008), pp. 281-300 | DOI | MR | Zbl
[Bri10] Semisimple actions of mapping class groups on CAT(0) spaces, Geometry of Riemann Surfaces (2010), pp. 1-14 | DOI
[BV06] Automorphism groups of free groups, surface groups and free Abelian groups, Problems on Mapping Class Groups and Related Topics (2006), pp. 301-316 | DOI
[Bro02] Pants decompositions and the Weil-Petersson metric, Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001) (2002), pp. 27-40 | DOI
[Bro03] The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Am. Math. Soc., Volume 16 (2003), pp. 495-535 (electronic) | DOI | MR | Zbl
[BuM00] Lattices in product of trees, Publ. Math. IHÉS, Volume 92 (2000), pp. 151-194 (2001) | DOI | MR | Zbl
[CF10] Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., Volume 19 (2010), pp. 1296-1319 | DOI | MR | Zbl
[CS11] Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011), pp. 851-891 | DOI | MR | Zbl
[CB88] Automorphisms of Surfaces After Nielsen and Thurston (1988) | DOI | Zbl
[CV86] Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986), pp. 91-119 | DOI | MR | Zbl
[DGO] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, | arXiv
[dlHV89] La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque, Volume 175 (1989), p. 158 (With an appendix by M. Burger)
[Del] T. Delzant, A finiteness property on monodromies of holomorphic families, | arXiv
[DrS] Tree-graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005), pp. 959-1058 (With an appendix by Denis Osin and Sapir) | DOI | MR | Zbl
[EF97] The second bounded cohomology of word-hyperbolic groups, Topology, Volume 36 (1997), pp. 1275-1289 | DOI | MR | Zbl
[EMR] A. Eskin, H. Masur, and R. Kasra, Large scale rank of Teichmüller space, | arXiv
[FLM01] Rank-1 phenomena for mapping class groups, Duke Math. J., Volume 106 (2001), pp. 581-597 | DOI | MR | Zbl
[FM12] A Primer on Mapping Class Groups (2012)
[FPS] R. Frigerio, M. B. Pozzetti, and A. Sisto, Extending higher dimensional quasi-cocycles, | arXiv
[Gro87] Hyperbolic groups, Essays in Group Theory (1987), pp. 75-263 | DOI
[Gro93] Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2 (Sussex, 1991) (1993), pp. 1-295
[Ham09] Geometry of the mapping class groups. I. Boundary amenability, Invent. Math., Volume 175 (2009), pp. 545-609 | DOI | MR | Zbl
[HM13] The free splitting complex of a free group, I: hyperbolicity, Geom. Topol., Volume 17 (2013), pp. 1581-1672 | DOI | MR | Zbl
[Hum] D. Hume, Embedding mapping class groups into finite products of trees, | arXiv
[Ker80] The asymptotic geometry of Teichmüller space, Topology, Volume 19 (1980), pp. 23-41 | DOI | MR | Zbl
[Kid08] The Mapping Class Group from the Viewpoint of Measure Equivalence Theory (2008) (916):viii+190
[MS13] Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol., Volume 13 (2013), pp. 2261-2282 | DOI | MR | Zbl
[Man05] Geometry of pseudocharacters, Geom. Topol., Volume 9 (2005), pp. 1147-1185 (electronic) | DOI | MR | Zbl
[Man06] Quasi-actions on trees and property (QFA), J. Lond. Math. Soc. (2), Volume 73 (2006), pp. 84-108 (With an appendix by N. Monod and B. Rémy) | DOI | MR | Zbl
[Mang10] Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal., Volume 19 (2010), pp. 1468-1480 | DOI | MR | Zbl
[Mang13] A recipe for short-word pseudo-Anosovs, Am. J. Math., Volume 135 (2013), pp. 1087-1116 | DOI | MR | Zbl
[MP12] Bushy pseudocharacters and group actions on quasitrees, Algebr. Geom. Topol., Volume 12 (2012), pp. 1725-1743 | DOI | MR | Zbl
[MM99] Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999), pp. 103-149 | DOI | MR | Zbl
[MM00] Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., Volume 10 (2000), pp. 902-974 | DOI | MR | Zbl
[Min96a] Extremal length estimates and product regions in Teichmüller space, Duke Math. J., Volume 83 (1996), pp. 249-286 | DOI | MR | Zbl
[Min96b] Quasi-projections in Teichmüller space, J. Reine Angew. Math., Volume 473 (1996), pp. 121-136 | MR | Zbl
[Mon06] An invitation to bounded cohomology, International Congress of Mathematicians (2006), pp. 1183-1211
[MSW03] Quasi-actions on trees. I. Bounded valence, Ann. Math. (2), Volume 158 (2003), pp. 115-164 | DOI | MR | Zbl
[Osi] D. Osin, Acylindrically hyperbolic groups, | arXiv
[Roe03] Lectures on Coarse Geometry (2003) | Zbl
[Sis] A. Sisto, On metric relative hyperbolicity, | arXiv
[Vog02] Automorphisms of free groups and outer space, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000) (2002), pp. 1-31
[Vog06] The cohomology of automorphism groups of free groups, International Congress of Mathematicians (2006), pp. 1101-1117
[Web] R. C. H. Webb, Combinatorics of tight geodesics and stable lengths, | arXiv
[Yu98] The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math. (2), Volume 147 (1998), pp. 325-355 | DOI | Zbl
Cité par Sources :