Constructing group actions on quasi-trees and applications to mapping class groups
Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 1-64.

A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and Out(Fn). As an application, we show that mapping class groups act on finite products of δ-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension.

DOI : 10.1007/s10240-014-0067-4
Mots-clés : Asymptotic Dimension, Cayley Graph, Mapping Class Group, Hyperbolic Group, Cayley Tree
Bestvina, Mladen 1 ; Bromberg, Ken 1 ; Fujiwara, Koji 2

1 Department of Mathematics, University of Utah 84112 Salt Lake City UT USA
2 Department of Mathematics, Kyoto University 606-8502 Kyoto Japan
@article{PMIHES_2015__122__1_0,
     author = {Bestvina, Mladen and Bromberg, Ken and Fujiwara, Koji},
     title = {Constructing group actions on quasi-trees and applications to mapping class groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--64},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     year = {2015},
     doi = {10.1007/s10240-014-0067-4},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-014-0067-4/}
}
TY  - JOUR
AU  - Bestvina, Mladen
AU  - Bromberg, Ken
AU  - Fujiwara, Koji
TI  - Constructing group actions on quasi-trees and applications to mapping class groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 1
EP  - 64
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-014-0067-4/
DO  - 10.1007/s10240-014-0067-4
LA  - en
ID  - PMIHES_2015__122__1_0
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%A Bromberg, Ken
%A Fujiwara, Koji
%T Constructing group actions on quasi-trees and applications to mapping class groups
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 1-64
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-014-0067-4/
%R 10.1007/s10240-014-0067-4
%G en
%F PMIHES_2015__122__1_0
Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji. Constructing group actions on quasi-trees and applications to mapping class groups. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 1-64. doi : 10.1007/s10240-014-0067-4. https://www.numdam.org/articles/10.1007/s10240-014-0067-4/

[AK11] Algom-Kfir, Y. Strongly contracting geodesics in outer space, Geom. Topol., Volume 15 (2011), pp. 2181-2234 | DOI | MR | Zbl

[AKB12] Algom-Kfir, Y.; Bestvina, M. Asymmetry of outer space, Geom. Dedic., Volume 156 (2012), pp. 81-92 | DOI | MR | Zbl

[BaBr] Ballmann, W.; Brin, M. Orbihedra of nonpositive curvature, Publ. Math. IHÉS, Volume 82 (1995), pp. 169-209 (1996) | DOI | Numdam | MR | Zbl

[Beh06] Behrstock, J. A. Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol., Volume 10 (2006), pp. 1523-1578 | DOI | MR | Zbl

[BC12] Behrstock, J.; Charney, R. Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., Volume 352 (2012), pp. 339-356 | DOI | MR | Zbl

[BDS11a] Behrstock, J.; Druţu, C.; Sapir, M. Addendum: median structures on asymptotic cones and homomorphisms into mapping class groups [mr2783135], Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 555-562 | DOI | MR | Zbl

[BDS11b] Behrstock, J.; Druţu, C.; Sapir, M. Median structures on asymptotic cones and homomorphisms into mapping class groups, Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 503-554 | DOI | MR | Zbl

[BM08] Behrstock, J. A.; Minsky, Y. N. Dimension and rank for mapping class groups, Ann. Math. (2), Volume 167 (2008), pp. 1055-1077 | DOI | MR | Zbl

[BD06] Bell, G. C.; Dranishnikov, A. N. A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Am. Math. Soc., Volume 358 (2006), pp. 4749-4764 (electronic) | DOI | MR | Zbl

[BD08] Bell, G.; Dranishnikov, A. Asymptotic dimension, Topol. Appl., Volume 155 (2008), pp. 1265-1296 | DOI | MR | Zbl

[BelF08] Bell, G. C.; Fujiwara, K. The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2), Volume 77 (2008), pp. 33-50 | DOI | MR | Zbl

[Bes11] Bestvina, M. A Bers-like proof of the existence of train tracks for free group automorphisms, Fundam. Math., Volume 214 (2011), pp. 1-12 | DOI | MR | Zbl

[BB] M. Bestvina and K. Bromberg, On the asymptotic dimension of a curve complex, preprint (2014).

[BBFa] M. Bestvina, K. Bromberg, and K. Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces, | arXiv

[BBFb] M. Bestvina, K. Bromberg, and K. Fujiwara, Projection complexes, acylindrically hyperbolic groups and bounded cohomology, preprint (2014).

[BBFc] M. Bestvina, K. Bromberg, and K. Fujiwara, Stable commutator length on mapping class groups, | arXiv

[BFe14a] Bestvina, M.; Feighn, M. Hyperbolicity of the complex of free factors, Adv. Math., Volume 256 (2014), pp. 104-155 | DOI | MR | Zbl

[BFe14b] Bestvina, M.; Feighn, M. Subfactor projections, J. Topol., Volume 7 (2014), pp. 771-804 | DOI | MR | Zbl

[BF02] Bestvina, M.; Fujiwara, K. Bounded cohomology of subgroups of mapping class groups, Geom. Topol., Volume 6 (2002), pp. 69-89 (electronic) | DOI | MR | Zbl

[BF09] Bestvina, M.; Fujiwara, K. A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal., Volume 19 (2009), pp. 11-40 | DOI | MR | Zbl

[Bow08] Bowditch, B. H. Tight geodesics in the curve complex, Invent. Math., Volume 171 (2008), pp. 281-300 | DOI | MR | Zbl

[Bri10] Bridson, M. R. Semisimple actions of mapping class groups on CAT(0) spaces, Geometry of Riemann Surfaces (2010), pp. 1-14 | DOI

[BV06] Bridson, M. R.; Vogtmann, K. Automorphism groups of free groups, surface groups and free Abelian groups, Problems on Mapping Class Groups and Related Topics (2006), pp. 301-316 | DOI

[Bro02] Brock, J. F. Pants decompositions and the Weil-Petersson metric, Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001) (2002), pp. 27-40 | DOI

[Bro03] Brock, J. F. The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Am. Math. Soc., Volume 16 (2003), pp. 495-535 (electronic) | DOI | MR | Zbl

[BuM00] Burger, M.; Mozes, S. Lattices in product of trees, Publ. Math. IHÉS, Volume 92 (2000), pp. 151-194 (2001) | DOI | MR | Zbl

[CF10] Caprace, P.-E.; Fujiwara, K. Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., Volume 19 (2010), pp. 1296-1319 | DOI | MR | Zbl

[CS11] Caprace, P.-E.; Sageev, M. Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011), pp. 851-891 | DOI | MR | Zbl

[CB88] Casson, A. J.; Bleiler, S. A. Automorphisms of Surfaces After Nielsen and Thurston (1988) | DOI | Zbl

[CV86] Culler, M.; Vogtmann, K. Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986), pp. 91-119 | DOI | MR | Zbl

[DGO] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, | arXiv

[dlHV89] de la Harpe, P.; Valette, A. La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque, Volume 175 (1989), p. 158 (With an appendix by M. Burger)

[Del] T. Delzant, A finiteness property on monodromies of holomorphic families, | arXiv

[DrS] Druţu, C.; Sapir, M. Tree-graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005), pp. 959-1058 (With an appendix by Denis Osin and Sapir) | DOI | MR | Zbl

[EF97] Epstein, D. B. A.; Fujiwara, K. The second bounded cohomology of word-hyperbolic groups, Topology, Volume 36 (1997), pp. 1275-1289 | DOI | MR | Zbl

[EMR] A. Eskin, H. Masur, and R. Kasra, Large scale rank of Teichmüller space, | arXiv

[FLM01] Farb, B.; Lubotzky, A.; Minsky, Y. Rank-1 phenomena for mapping class groups, Duke Math. J., Volume 106 (2001), pp. 581-597 | DOI | MR | Zbl

[FM12] Farb, B.; Margalit, D. A Primer on Mapping Class Groups (2012)

[FPS] R. Frigerio, M. B. Pozzetti, and A. Sisto, Extending higher dimensional quasi-cocycles, | arXiv

[Gro87] Gromov, M. Hyperbolic groups, Essays in Group Theory (1987), pp. 75-263 | DOI

[Gro93] Gromov, M. Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2 (Sussex, 1991) (1993), pp. 1-295

[Ham09] Hamenstädt, U. Geometry of the mapping class groups. I. Boundary amenability, Invent. Math., Volume 175 (2009), pp. 545-609 | DOI | MR | Zbl

[HM13] Handel, M.; Mosher, L. The free splitting complex of a free group, I: hyperbolicity, Geom. Topol., Volume 17 (2013), pp. 1581-1672 | DOI | MR | Zbl

[Hum] D. Hume, Embedding mapping class groups into finite products of trees, | arXiv

[Ker80] Kerckhoff, S. P. The asymptotic geometry of Teichmüller space, Topology, Volume 19 (1980), pp. 23-41 | DOI | MR | Zbl

[Kid08] Kida, Y. The Mapping Class Group from the Viewpoint of Measure Equivalence Theory (2008) (916):viii+190

[MS13] Mackay, J. M.; Sisto, A. Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol., Volume 13 (2013), pp. 2261-2282 | DOI | MR | Zbl

[Man05] Manning, J. F. Geometry of pseudocharacters, Geom. Topol., Volume 9 (2005), pp. 1147-1185 (electronic) | DOI | MR | Zbl

[Man06] Manning, J. F. Quasi-actions on trees and property (QFA), J. Lond. Math. Soc. (2), Volume 73 (2006), pp. 84-108 (With an appendix by N. Monod and B. Rémy) | DOI | MR | Zbl

[Mang10] Mangahas, J. Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal., Volume 19 (2010), pp. 1468-1480 | DOI | MR | Zbl

[Mang13] Mangahas, J. A recipe for short-word pseudo-Anosovs, Am. J. Math., Volume 135 (2013), pp. 1087-1116 | DOI | MR | Zbl

[MP12] Martínez-Pérez, Á. Bushy pseudocharacters and group actions on quasitrees, Algebr. Geom. Topol., Volume 12 (2012), pp. 1725-1743 | DOI | MR | Zbl

[MM99] Masur, H. A.; Minsky, Y. N. Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999), pp. 103-149 | DOI | MR | Zbl

[MM00] Masur, H. A.; Minsky, Y. N. Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., Volume 10 (2000), pp. 902-974 | DOI | MR | Zbl

[Min96a] Minsky, Y. N. Extremal length estimates and product regions in Teichmüller space, Duke Math. J., Volume 83 (1996), pp. 249-286 | DOI | MR | Zbl

[Min96b] Minsky, Y. N. Quasi-projections in Teichmüller space, J. Reine Angew. Math., Volume 473 (1996), pp. 121-136 | MR | Zbl

[Mon06] Monod, N. An invitation to bounded cohomology, International Congress of Mathematicians (2006), pp. 1183-1211

[MSW03] Mosher, L.; Sageev, M.; Whyte, K. Quasi-actions on trees. I. Bounded valence, Ann. Math. (2), Volume 158 (2003), pp. 115-164 | DOI | MR | Zbl

[Osi] D. Osin, Acylindrically hyperbolic groups, | arXiv

[Roe03] Roe, J. Lectures on Coarse Geometry (2003) | Zbl

[Sis] A. Sisto, On metric relative hyperbolicity, | arXiv

[Vog02] Vogtmann, K. Automorphisms of free groups and outer space, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000) (2002), pp. 1-31

[Vog06] Vogtmann, K. The cohomology of automorphism groups of free groups, International Congress of Mathematicians (2006), pp. 1101-1117

[Web] R. C. H. Webb, Combinatorics of tight geodesics and stable lengths, | arXiv

[Yu98] Yu, G. The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math. (2), Volume 147 (1998), pp. 325-355 | DOI | Zbl

  • Han, Suzhen; Nguyen, Hoang Thanh; Yang, Wenyuan Property (QT) for 3-manifold groups, Algebraic Geometric Topology, Volume 25 (2025) no. 1, p. 107 | DOI:10.2140/agt.2025.25.107
  • Bader, Uri; Sisto, Alessandro Characterising acylindrical hyperbolicity via permutation actions, Proceedings of the American Mathematical Society (2025) | DOI:10.1090/proc/17207
  • Petyt, Harry; Spriano, Davide; Zalloum, Abdul Hyperbolic models for CAT(0) spaces, Advances in Mathematics, Volume 450 (2024), p. 109742 | DOI:10.1016/j.aim.2024.109742
  • Fujiwara, Koji; Schleimer, Saul Asymptotic dimensions of the arc graphs and disk graphs, Algebraic Geometric Topology, Volume 24 (2024) no. 5, p. 2655 | DOI:10.2140/agt.2024.24.2655
  • Hagen, Mark; Russell, Jacob; Sisto, Alessandro; Spriano, Davide Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms, Annales de l'Institut Fourier (2024), p. 1 | DOI:10.5802/aif.3654
  • Abbott, Carolyn; Nguyen, Hoang Thanh; Rasmussen, Alexander J. Largest hyperbolic action of 3‐manifold groups, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 10, p. 3090 | DOI:10.1112/blms.13118
  • Berger, Eli; Seymour, Paul Bounded-Diameter Tree-Decompositions, Combinatorica, Volume 44 (2024) no. 3, p. 659 | DOI:10.1007/s00493-024-00088-1
  • Wright, Alex Spheres in the curve graph and linear connectivity of the Gromov boundary, Communications of the American Mathematical Society, Volume 4 (2024) no. 12, p. 548 | DOI:10.1090/cams/38
  • COULON, RÉMI Patterson–Sullivan theory for groups with a strongly contracting element, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 11, p. 3216 | DOI:10.1017/etds.2024.10
  • Behrstock, Jason; Hagen, Mark; Martin, Alexandre; Sisto, Alessandro A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups, Journal of Topology, Volume 17 (2024) no. 3 | DOI:10.1112/topo.12351
  • Abbott, Carolyn R.; Rasmussen, Alexander J. Largest hyperbolic actions and quasi-parabolic actions in groups, Journal of Topology and Analysis, Volume 16 (2024) no. 04, p. 495 | DOI:10.1142/s1793525322500066
  • Abbott, Carolyn R.; Manning, Jason F. Acylindrically Hyperbolic Groups and Their Quasi-Isometrically Embedded Subgroups, Michigan Mathematical Journal, Volume 74 (2024) no. 2 | DOI:10.1307/mmj/20216112
  • Guihéneuf, Pierre‐Antoine; Militon, Emmanuel Parabolic isometries of the fine curve graph of the torus, Proceedings of the London Mathematical Society, Volume 129 (2024) no. 2 | DOI:10.1112/plms.12625
  • Gorski, Christian Strict monotonicity for first passage percolation on graphs of polynomial growth and quasi-trees, The Annals of Probability, Volume 52 (2024) no. 4 | DOI:10.1214/23-aop1676
  • Huang, Jingyin; Kleiner, Bruce; Stadler, Stephan Morse quasiflats II, Advances in Mathematics, Volume 425 (2023), p. 109075 | DOI:10.1016/j.aim.2023.109075
  • Hagen, Mark F; Petyt, Harry Projection complexes and quasimedian maps, Algebraic Geometric Topology, Volume 22 (2023) no. 7, p. 3277 | DOI:10.2140/agt.2022.22.3277
  • Morales, Israel; Valdez, Ferrán Loxodromic elements in big mapping class groups via the Hooper–Thurston–Veech construction, Algebraic Geometric Topology, Volume 22 (2023) no. 8, p. 3809 | DOI:10.2140/agt.2022.22.3809
  • Russell, Jacob; Spriano, Davide; Tran, Hung Cong Convexity in hierarchically hyperbolic spaces, Algebraic Geometric Topology, Volume 23 (2023) no. 3, p. 1167 | DOI:10.2140/agt.2023.23.1167
  • Dickmann, Ryan Mapping class groups of surfaces with noncompact boundary components, Algebraic Geometric Topology, Volume 23 (2023) no. 6, p. 2777 | DOI:10.2140/agt.2023.23.2777
  • Tselekidis, Panagiotis Asymptotic dimension of graphs of groups and one-relator groups, Algebraic Geometric Topology, Volume 23 (2023) no. 8, p. 3587 | DOI:10.2140/agt.2023.23.3587
  • Durham, Matthew G; Minsky, Yair N; Sisto, Alessandro Stable cubulations, bicombings, and barycenters, Geometry Topology, Volume 27 (2023) no. 6, p. 2383 | DOI:10.2140/gt.2023.27.2383
  • Hagen, Mark Non-colorable hierarchically hyperbolic groups, International Journal of Algebra and Computation, Volume 33 (2023) no. 02, p. 337 | DOI:10.1142/s0218196723500170
  • Handel, Michael; Mosher, Lee Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of 𝖮𝗎𝗍(𝖥_𝗇), Memoirs of the American Mathematical Society, Volume 292 (2023) no. 1454 | DOI:10.1090/memo/1454
  • Nguyen, Hoang Thanh; Yang, Wenyuan Croke–Kleiner Admissible Groups: Property (QT) and Quasiconvexity, Michigan Mathematical Journal, Volume 73 (2023) no. 5 | DOI:10.1307/mmj/20216045
  • Bhunia, Sushil; Krishna, Swathi Twisted conjugacy in big mapping class groups, Topology and its Applications, Volume 324 (2023), p. 108353 | DOI:10.1016/j.topol.2022.108353
  • Tshishiku, Bena Convex-compact subgroups of the Goeritz group, Transactions of the American Mathematical Society (2023) | DOI:10.1090/tran/8905
  • Bowden, Jonathan; Hensel, Sebastian; Mann, Kathryn; Militon, Emmanuel; Webb, Richard Rotation sets and actions on curves, Advances in Mathematics, Volume 408 (2022), p. 108579 | DOI:10.1016/j.aim.2022.108579
  • Eike, Joshua; Zalloum, Abdul Regular languages for contracting geodesics, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 3, p. 961 | DOI:10.1112/blms.12608
  • Vaskou, Nicolas Acylindrical hyperbolicity for Artin groups of dimension 2, Geometriae Dedicata, Volume 216 (2022) no. 1 | DOI:10.1007/s10711-021-00664-5
  • KATO, MOTOKO; OGUNI, SHIN-ICHI ACYLINDRICAL HYPERBOLICITY OF ARTIN–TITS GROUPS ASSOCIATED WITH TRIANGLE-FREE GRAPHS AND CONES OVER SQUARE-FREE BIPARTITE GRAPHS, Glasgow Mathematical Journal, Volume 64 (2022) no. 1, p. 51 | DOI:10.1017/s0017089520000555
  • Huang, Jingyin; Kleiner, Bruce; Stadler, Stephan Morse quasiflats I, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2022 (2022) no. 784, p. 53 | DOI:10.1515/crelle-2021-0073
  • Gekhtman, Ilya; Yang, Wen‐yuan Counting conjugacy classes in groups with contracting elements, Journal of Topology, Volume 15 (2022) no. 2, p. 620 | DOI:10.1112/topo.12221
  • Horbez, Camille; Qing, Yulan; Rafi, Kasra BIG MAPPING CLASS GROUPS WITH HYPERBOLIC ACTIONS: CLASSIFICATION AND APPLICATIONS, Journal of the Institute of Mathematics of Jussieu, Volume 21 (2022) no. 6, p. 2173 | DOI:10.1017/s1474748021000189
  • Genevois, Anthony Rank-one isometries of CAT(0) cube complexes and their centralisers, Advances in Geometry, Volume 0 (2021) no. 0 | DOI:10.1515/advgeom-2021-0011
  • Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji Proper actions on finite products of quasi-trees, Annales Henri Lebesgue, Volume 4 (2021), p. 685 | DOI:10.5802/ahl.85
  • Clay, Matt; Mangahas, Johanna; Margalit, Dan Right-angled Artin groups as normal subgroups of mapping class groups, Compositio Mathematica, Volume 157 (2021) no. 8, p. 1807 | DOI:10.1112/s0010437x21007417
  • Behrstock, Jason; Hagen, Mark F.; Sisto, Alessandro Quasiflats in hierarchically hyperbolic spaces, Duke Mathematical Journal, Volume 170 (2021) no. 5 | DOI:10.1215/00127094-2020-0056
  • Casals-Ruiz, Montserrat; Garreta, Albert; de la Nuez González, Javier On the Positive Theory of Groups Acting on Trees, International Mathematics Research Notices, Volume 2021 (2021) no. 3, p. 1837 | DOI:10.1093/imrn/rnaa164
  • Genevois, Anthony; Horbez, Camille Acylindrical hyperbolicity of automorphism groups of infinitely ended groups, Journal of Topology, Volume 14 (2021) no. 3, p. 963 | DOI:10.1112/topo.12203
  • Qing, Yulan; Rafi, Kasra Quasi‐geodesics in Out(Fn) and their shadows in sub‐factors, Journal of the London Mathematical Society, Volume 104 (2021) no. 1, p. 147 | DOI:10.1112/jlms.12426
  • Handel, Michael; Mosher, Lee Second bounded cohomology and WWPD, Kyoto Journal of Mathematics, Volume 61 (2021) no. 4 | DOI:10.1215/21562261-2021-0017
  • Hamenstädt, Ursula; Hensel, Sebastian The Geometry of the Handlebody Groups II: Dehn Functions, Michigan Mathematical Journal, Volume 70 (2021) no. 1 | DOI:10.1307/mmj/1586160015
  • Maher, Joseph; Tiozzo, Giulio Random walks, WPD actions, and the Cremona group, Proceedings of the London Mathematical Society, Volume 123 (2021) no. 2, p. 153 | DOI:10.1112/plms.12394
  • Dahmani, François; Hagen, Mark; Sisto, Alessandro Dehn filling Dehn twists, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 1, p. 28 | DOI:10.1017/prm.2020.1
  • Genevois, Anthony Contracting isometries of CAT(0) cube complexes and acylindrical hyperbolicity of diagram groups, Algebraic Geometric Topology, Volume 20 (2020) no. 1, p. 49 | DOI:10.2140/agt.2020.20.49
  • Genevois, Anthony A note on torsion subgroups of groups acting on finite-dimensional CAT(0) cube complexes, Discrete Mathematics, Volume 343 (2020) no. 6, p. 111832 | DOI:10.1016/j.disc.2020.111832
  • ARZHANTSEVA, GOULNARA N.; CASHEN, CHRISTOPHER H. Cogrowth for group actions with strongly contracting elements, Ergodic Theory and Dynamical Systems, Volume 40 (2020) no. 7, p. 1738 | DOI:10.1017/etds.2018.123
  • Willett, Rufus; Yu, Guoliang Higher Index Theory, 2020 | DOI:10.1017/9781108867351
  • Aramayona, Javier; Vlamis, Nicholas G. Big Mapping Class Groups: An Overview, In the Tradition of Thurston (2020), p. 459 | DOI:10.1007/978-3-030-55928-1_12
  • Bestvina, Mladen; Bromberg, Kenneth; Kent, Autumn E.; Leininger, Christopher J. Undistorted purely pseudo-Anosov groups, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 760, p. 213 | DOI:10.1515/crelle-2018-0013
  • Delzant, Thomas; Steenbock, Markus Product set growth in groups and hyperbolic geometry, Journal of Topology, Volume 13 (2020) no. 3, p. 1183 | DOI:10.1112/topo.12156
  • Engel, Alexander; Marcinkowski, Michał Burghelea conjecture and asymptotic dimension of groups, Journal of Topology and Analysis, Volume 12 (2020) no. 02, p. 321 | DOI:10.1142/s1793525319500559
  • Yang, Wen-yuan Genericity of contracting elements in groups, Mathematische Annalen, Volume 376 (2020) no. 3-4, p. 823 | DOI:10.1007/s00208-018-1758-9
  • Bestvina, Mladen; Horbez, Camille; Wade, Richard D. On the topological dimension of the Gromov boundaries of some hyperbolic Out(FN)-graphs, Pacific Journal of Mathematics, Volume 308 (2020) no. 1, p. 1 | DOI:10.2140/pjm.2020.308.1
  • Xie, Zhizhang; Yu, Guoliang Higher invariants in noncommutative geometry, Advances in Noncommutative Geometry (2019), p. 691 | DOI:10.1007/978-3-030-29597-4_12
  • Bestvina, Mladen; Bromberg, Kenneth; Fujiwara, Koji The verbal width of acylindrically hyperbolic groups, Algebraic Geometric Topology, Volume 19 (2019) no. 1, p. 477 | DOI:10.2140/agt.2019.19.477
  • Mimura, Masato; Sako, Hiroki Group Approximation in Cayley Topology and Coarse Geometry, Part II: Fibred Coarse Embeddings, Analysis and Geometry in Metric Spaces, Volume 7 (2019) no. 1, p. 62 | DOI:10.1515/agms-2019-0005
  • Kim, Sang-hyun; Koberda, Thomas; Mj, Mahan Combination Theorem for Flexible Groups, Flexibility of Group Actions on the Circle, Volume 2231 (2019), p. 71 | DOI:10.1007/978-3-030-02855-8_5
  • Bestvina, Mladen; Bromberg, Ken On the asymptotic dimension of the curve complex, Geometry Topology, Volume 23 (2019) no. 5, p. 2227 | DOI:10.2140/gt.2019.23.2227
  • Pal, Abhijit; Sardar, Pranab Geometric group theory and hyperbolic geometry: Recent contributions from Indian mathematicians, Indian Journal of Pure and Applied Mathematics, Volume 50 (2019) no. 3, p. 767 | DOI:10.1007/s13226-019-0353-4
  • Yang, Wen-yuan Statistically Convex-Cocompact Actions of Groups with Contracting Elements, International Mathematics Research Notices, Volume 2019 (2019) no. 23, p. 7259 | DOI:10.1093/imrn/rny001
  • Bartels, Arthur; Bestvina, Mladen The Farrell–Jones Conjecture for mapping class groups, Inventiones mathematicae, Volume 215 (2019) no. 2, p. 651 | DOI:10.1007/s00222-018-0834-9
  • Cordes, Matthew; Hume, David Relatively hyperbolic groups with fixed peripherals, Israel Journal of Mathematics, Volume 230 (2019) no. 1, p. 443 | DOI:10.1007/s11856-019-1830-5
  • Hamenstädt, Ursula Asymptotic dimension and the disk graph II, Journal of Topology, Volume 12 (2019) no. 3, p. 675 | DOI:10.1112/topo.12096
  • Abbott, Carolyn R.; Dahmani, François Property Pnaive P naive for acylindrically hyperbolic groups, Mathematische Zeitschrift, Volume 291 (2019) no. 1-2, p. 555 | DOI:10.1007/s00209-018-2094-1
  • Behrstock, Jason; Hagen, Mark; Sisto, Alessandro Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, Pacific Journal of Mathematics, Volume 299 (2019) no. 2, p. 257 | DOI:10.2140/pjm.2019.299.257
  • Charney, Ruth; Morris-Wright, Rose Artin groups of infinite type: Trivial centers and acylindrical hyperbolicity, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 9, p. 3675 | DOI:10.1090/proc/14503
  • Yu, G. The Novikov conjecture, Russian Mathematical Surveys, Volume 74 (2019) no. 3, p. 525 | DOI:10.1070/rm9882
  • Cashen, Christopher; Mackay, John A metrizable topology on the contracting boundary of a group, Transactions of the American Mathematical Society, Volume 372 (2019) no. 3, p. 1555 | DOI:10.1090/tran/7544
  • Handel, Michael; Mosher, Lee The free splitting complex of a free group, II: Loxodromic outer automorphisms, Transactions of the American Mathematical Society, Volume 372 (2019) no. 6, p. 4053 | DOI:10.1090/tran/7698
  • Watanabe, Yohsuke Pseudo–Anosov mapping classes from pure mapping classes, Transactions of the American Mathematical Society, Volume 373 (2019) no. 1, p. 419 | DOI:10.1090/tran/7919
  • Yu, Guoliang Гипотеза Новикова, Успехи математических наук, Volume 74 (2019) no. 3(447), p. 167 | DOI:10.4213/rm9882
  • Parlier, Hugo; Petri, Bram The Genus of Curve, Pants and Flip Graphs, Discrete Computational Geometry, Volume 59 (2018) no. 1, p. 1 | DOI:10.1007/s00454-017-9922-7
  • GASTER, JONAH; GREENE, JOSHUA EVAN; VLAMIS, NICHOLAS G. COLORING CURVES ON SURFACES, Forum of Mathematics, Sigma, Volume 6 (2018) | DOI:10.1017/fms.2018.12
  • Dahmani, François The normal closure of big Dehn twists and plate spinning with rotating families, Geometry Topology, Volume 22 (2018) no. 7, p. 4113 | DOI:10.2140/gt.2018.22.4113
  • Maher, Joseph; Tiozzo, Giulio Random walks on weakly hyperbolic groups, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 742, p. 187 | DOI:10.1515/crelle-2015-0076
  • Gekhtman, Ilya; Taylor, Samuel J.; Tiozzo, Giulio Counting loxodromics for hyperbolic actions, Journal of Topology, Volume 11 (2018) no. 2, p. 379 | DOI:10.1112/topo.12053
  • Beckhardt, Susan; Goldfarb, Boris Extension properties of asymptotic property C and finite decomposition complexity, Topology and its Applications, Volume 239 (2018), p. 181 | DOI:10.1016/j.topol.2018.02.034
  • Balasubramanya, Sahana Acylindrical group actions on quasi-trees, Algebraic Geometric Topology, Volume 17 (2017) no. 4, p. 2145 | DOI:10.2140/agt.2017.17.2145
  • Martin, Alexandre On the acylindrical hyperbolicity of the tame automorphism group of SL2(C), Bulletin of the London Mathematical Society, Volume 49 (2017) no. 5, p. 881 | DOI:10.1112/blms.12071
  • Eskin, Alex; Masur, Howard; Rafi, Kasra Large-scale rank of Teichmüller space, Duke Mathematical Journal, Volume 166 (2017) no. 8 | DOI:10.1215/00127094-0000006x
  • Behrstock, Jason; Hagen, Mark; Sisto, Alessandro Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups, Geometry Topology, Volume 21 (2017) no. 3, p. 1731 | DOI:10.2140/gt.2017.21.1731
  • Sisto, Alessandro Tracking rates of random walks, Israel Journal of Mathematics, Volume 220 (2017) no. 1, p. 1 | DOI:10.1007/s11856-017-1508-9
  • Cordes, Matthew; Hume, David Stability and the Morse boundary, Journal of the London Mathematical Society, Volume 95 (2017) no. 3, p. 963 | DOI:10.1112/jlms.12042
  • Gültepe, Funda; Leininger, Christopher An arc graph distance formula for the flip graph, Proceedings of the American Mathematical Society, Volume 145 (2017) no. 7, p. 3179 | DOI:10.1090/proc/13451
  • Behrstock, Jason; Hagen, Mark F.; Sisto, Alessandro Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups, Proceedings of the London Mathematical Society, Volume 114 (2017) no. 5, p. 890 | DOI:10.1112/plms.12026
  • Martínez-Pérez, Álvaro Generalized Chordality, Vertex Separators and Hyperbolicity on Graphs, Symmetry, Volume 9 (2017) no. 10, p. 199 | DOI:10.3390/sym9100199
  • Delzant, Thomas Kähler groups, R R -trees, and holomorphic families of riemann surfaces, Geometric and Functional Analysis, Volume 26 (2016) no. 1, p. 160 | DOI:10.1007/s00039-016-0355-x
  • Horbez, Camille Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, Journal of Topology, Volume 9 (2016) no. 2, p. 401 | DOI:10.1112/jtopol/jtv045
  • Arzhantseva, Goulnara; Cashen, Christopher; Tao, Jing Growth tight actions, Pacific Journal of Mathematics, Volume 278 (2015) no. 1, p. 1 | DOI:10.2140/pjm.2015.278.1
  • Webb, Richard Combinatorics of tight geodesics and stable lengths, Transactions of the American Mathematical Society, Volume 367 (2015) no. 10, p. 7323 | DOI:10.1090/tran/6301

Cité par 91 documents. Sources : Crossref