Let be a regular local ring containing an infinite field. Let be a reductive group scheme over . We prove that a principal -bundle over is trivial if it is trivial over the fraction field of . In other words, if is the fraction field of , then the map of non-abelian cohomology pointed sets
@article{PMIHES_2015__122__169_0, author = {Fedorov, Roman and Panin, Ivan}, title = {A proof of the {Grothendieck{\textendash}Serre} conjecture on principal bundles over regular local rings containing infinite fields}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {169--193}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {122}, year = {2015}, doi = {10.1007/s10240-015-0075-z}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-015-0075-z/} }
TY - JOUR AU - Fedorov, Roman AU - Panin, Ivan TI - A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields JO - Publications Mathématiques de l'IHÉS PY - 2015 SP - 169 EP - 193 VL - 122 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-015-0075-z/ DO - 10.1007/s10240-015-0075-z LA - en ID - PMIHES_2015__122__169_0 ER -
%0 Journal Article %A Fedorov, Roman %A Panin, Ivan %T A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields %J Publications Mathématiques de l'IHÉS %D 2015 %P 169-193 %V 122 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-015-0075-z/ %R 10.1007/s10240-015-0075-z %G en %F PMIHES_2015__122__169_0
Fedorov, Roman; Panin, Ivan. A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields. Publications Mathématiques de l'IHÉS, Tome 122 (2015), pp. 169-193. doi : 10.1007/s10240-015-0075-z. http://archive.numdam.org/articles/10.1007/s10240-015-0075-z/
[Che] V. Chernousov, Variations on a theme of groups splitting by a quadratic extension and Grothendieck–Serre conjecture for group schemes with trivial invariant, Doc. Math. Extra volume: Andrei A. Suslin sixtieth birthday (2010), 147–169.
[CTO] Espaces principaux homogènes localement triviaux, Publ. Math. IHÉS, Volume 75 (1992), pp. 97-122 | DOI | Numdam | Zbl
[CTS] Principal homogeneous spaces under flasque tori: Applications, J. Algebra, Volume 106 (1987), pp. 148-205 | DOI | MR | Zbl
[DG] Schémas en Groupes. III: Structure des Schémas en Groupes Réductifs. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck (1970)
[Fed] R. Fedorov, Affine Grassmannians of group schemes and exotic principal bundles over affine lines, ArXiv e-prints | arXiv
[Gab] Affine analog of the proper base change theorem, Isr. J. Math., Volume 87 (1994), pp. 325-335 | DOI | Zbl
[Gil1] Torseurs sur la droite affine, Transform. Groups, Volume 7 (2002), pp. 231-245 | DOI | MR | Zbl
[Gil2] Errata: “Torsors on the affine line” (French) [Transform. Groups, 7 (2002), 231–245], Transform. Groups, Volume 10 (2005), pp. 267-269 | DOI | MR
[Gil3] Le problème de Kneser–Tits, Séminaire Bourbaki, 2007/2008, Exp. No. 983 (2009), pp. 39-81
[Gro1] Torsion homologique et sections rationnelles, Anneaux de Chow et Applications, Exp. No. 5 (1958), pp. 1-29
[Gro2] Éléments de géométrie algébrique. IV. Étude local des schémas et des morphismes des schémas, troisième partie, Publ. Math. IHÉS, Volume 28 (1966), p. 255 | DOI | MR
[Gro3] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, quatrième partie, Publ. Math. IHÉS, Volume 32 (1967), p. 361 | MR
[Gro4] Le groupe de Brauer. II. Théorie cohomologique, Dix Exposés sur la Cohomologie des Schémas (1968), pp. 67-87
[Gro5] Technique de descente et théorèmes d’existence en géometrie algébrique. I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, Vol. 5, Exp. No. 190 (1995), pp. 299-327
[Mat] Commutative Ring Theory (1989) (translated from the Japanese by M. Reid) | Zbl
[Mer] The norm principle for algebraic groups, St. Petersburg Math. J., Volume 7 (1996), pp. 243-264 | MR
[MV] -homotopy theory of schemes, Publ. Math. IHÉS, Volume 90 (2001), pp. 45-143 (1999) | DOI
[Nis1] Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind, C. R. Acad. Sci. Paris, Sér. I, Math., Volume 299 (1984), pp. 5-8 | MR | Zbl
[Nis2] Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional regular local rings, C. R. Acad. Sci. Paris, Sér. I, Math., Volume 309 (1989), pp. 651-655 | MR | Zbl
[Oja1] Quadratic forms over regular rings, J. Indian Math. Soc., Volume 44 (1982), pp. 109-116 (1980) | MR
[Oja2] Unités représentées par des formes quadratiques ou par des normes réduites, Algebraic -theory, Part II (1982), pp. 291-299 | DOI
[OP] Rationally trivial Hermitian spaces are locally trivial, Math. Z., Volume 237 (2001), pp. 181-198 | DOI | MR | Zbl
[OPZ] On the norm principle for quadratic forms, J. Ramanujan Math. Soc., Volume 19 (2004), pp. 289-300 | MR | Zbl
[Pan] I. Panin, On Grothendieck–Serre’s conjecture concerning principal G-bundles over reductive group schemes: II. ArXiv e-prints, | arXiv
[Pop] General Néron desingularization and approximation, Nagoya Math. J., Volume 104 (1986), pp. 85-115 | MR | Zbl
[PPS] I. Panin, V. Petrov and A. Stavrova, Grothendieck–Serre conjecture for adjoint groups of types E_6 and E_7 and for certain classical groups, ArXiv e-prints, | arXiv
[PS1] On a conjecture of Grothendieck concerning Azumaya algebras, St. Petersburg Math. J., Volume 9 (1998), pp. 851-858 | MR
[PS2] V. Petrov and A. Stavrova, Grothendieck–Serre conjecture for groups of type with trivial invariant, ArXiv e-prints, | arXiv
[PSV] On Grothendieck–Serre’s conjecture concerning principal -bundles over reductive group schemes: I, Compos. Math., Volume 151 (2015), pp. 535-567 | DOI | MR
[Rag1] Principal bundles admitting a rational section, Invent. Math., Volume 116 (1994), pp. 409-423 | DOI | MR | Zbl
[Rag2] Erratum: “Principal bundles admitting a rational section” [Invent. Math., 116 (1994), 409–423], Invent. Math., Volume 121 (1995), p. 223 | DOI | MR | Zbl
[Ray] Anneaux Locaux Henséliens (1970) | Zbl
[Ser] Espaces fibrés algébrique, Anneaux de Chow et Applications (1958), pp. 1-37
[SGA] Théorie des Topos et Cohomologie étale des Schémas. Tome 3 (1973) (avec la collaboration de P. Deligne et B. Saint-Donat)
[Spi] A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms, J. Am. Math. Soc., Volume 12 (1999), pp. 381-444 | DOI | MR | Zbl
[Swa] Néron–Popescu desingularization, Algebra and Geometry (1998), pp. 135-192
[Voe] -homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (1998), pp. 579-604 (electronic)
[Zai] On Grothendieck conjecture about principal homogeneous spaces for some classical algebraic groups, St. Petersburg Math. J., Volume 12 (2001), pp. 117-143 | MR
Cité par Sources :