Double ramification cycles on the moduli spaces of curves
Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 221-266.

Curves of genus g which admit a map to P1 with specified ramification profile μ over 0P1 and ν over P1 define a double ramification cycle DRg(μ,ν) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves.

The cycle DRg(μ,ν) for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for DRg(μ,ν) in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hain’s formula in the compact type case.

When μ=ν=, the formula for double ramification cycles expresses the top Chern class λg of the Hodge bundle of Mg as a push-forward of tautological classes supported on the divisor of non-separating nodes. Applications to Hodge integral calculations are given.

DOI : 10.1007/s10240-017-0088-x
Janda, F. 1 ; Pandharipande, R. 2 ; Pixton, A. 3 ; Zvonkine, D. 4

1 Department of Mathematics, University of Michigan Ann Arbor USA
2 Departement Mathematik, ETH Zürich Zürich Switzerland
3 Department of Mathematics, MIT Cambridge USA
4 Institut de Mathématiques de Jussieu, CNRS Paris France
@article{PMIHES_2017__125__221_0,
     author = {Janda, F. and Pandharipande, R. and Pixton, A. and Zvonkine, D.},
     title = {Double ramification cycles on the moduli spaces of curves},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {221--266},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {125},
     year = {2017},
     doi = {10.1007/s10240-017-0088-x},
     mrnumber = {3668650},
     zbl = {1370.14029},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-017-0088-x/}
}
TY  - JOUR
AU  - Janda, F.
AU  - Pandharipande, R.
AU  - Pixton, A.
AU  - Zvonkine, D.
TI  - Double ramification cycles on the moduli spaces of curves
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 221
EP  - 266
VL  - 125
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-017-0088-x/
DO  - 10.1007/s10240-017-0088-x
LA  - en
ID  - PMIHES_2017__125__221_0
ER  - 
%0 Journal Article
%A Janda, F.
%A Pandharipande, R.
%A Pixton, A.
%A Zvonkine, D.
%T Double ramification cycles on the moduli spaces of curves
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 221-266
%V 125
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-017-0088-x/
%R 10.1007/s10240-017-0088-x
%G en
%F PMIHES_2017__125__221_0
Janda, F.; Pandharipande, R.; Pixton, A.; Zvonkine, D. Double ramification cycles on the moduli spaces of curves. Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 221-266. doi : 10.1007/s10240-017-0088-x. https://www.numdam.org/articles/10.1007/s10240-017-0088-x/

[1.] Abramovich, D.; Graber, T.; Vistoli, A. Gromov-Witten theory of Deligne-Mumford stacks, Am. J. Math., Volume 130 (2008), pp. 1337-1398 | DOI | MR | Zbl

[2.] Bryan, J.; Pandharipande, R. The local Gromov-Witten theory of curves, J. Am. Math. Soc., Volume 21 (2008), pp. 101-136 | DOI | MR | Zbl

[3.] Buryak, A.; Shadrin, S.; Spitz, L.; Zvonkine, D. Integrals of ψ-classes over double ramification cycles, Am. J. Math., Volume 137 (2015), pp. 699-737 | DOI | MR | Zbl

[4.] Cavalieri, R.; Marcus, S.; Wise, J. Polynomial families of tautological classes on Mg,nrt, J. Pure Appl. Algebra, Volume 216 (2012), pp. 950-981 | DOI | MR | Zbl

[5.] Chiodo, A. Stable twisted curves and their r-spin structures, Ann. Inst. Fourier, Volume 58 (2008), pp. 1635-1689 | DOI | Numdam | MR | Zbl

[6.] Chiodo, A. Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math., Volume 144 (2008), pp. 1461-1496 | DOI | MR | Zbl

[7.] Chiodo, A.; Zvonkine, D. Twisted Gromov-Witten r-spin potential and Givental’s quantization, Adv. Theor. Math. Phys., Volume 13 (2009), pp. 1335-1369 | DOI | MR | Zbl

[8.] E. Clader and F. Janda, Pixton’s double ramification cycle relations, | arXiv

[9.] Faber, C. A conjectural description of the tautological ring of the moduli space of curves, Moduli of Curves and Abelian Varieties (1999), pp. 109-129 | DOI

[10.] Faber, C.; Pandharipande, R. Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | DOI | MR | Zbl

[11.] Faber, C.; Pandharipande, R. Relative maps and tautological classes, J. Eur. Math. Soc., Volume 7 (2005), pp. 13-49 | DOI | MR | Zbl

[12.] Faber, C.; Pandharipande, R. Tautological and non-tautological cohomology of the moduli space of curves, Handbook of Moduli, vol. I (2013), pp. 293-330

[13.] G. Farkas and R. Pandharipande, The moduli space of twisted canonical divisors, with Appendix by F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, J. Inst. Math. Jussieu (2017, to appear), doi:, | arXiv | DOI

[14.] Getzler, E.; Pandharipande, R. Virasoro constraints and the Chern classes of the Hodge bundle, Nucl. Phys. B, Volume 530 (1998), pp. 701-714 | DOI | MR | Zbl

[15.] Graber, T.; Pandharipande, R. Localization of virtual classes, Invent. Math., Volume 135 (1999), pp. 487-518 | DOI | MR | Zbl

[16.] Graber, T.; Pandharipande, R. Constructions of nontautological classes on moduli spaces of curves, Mich. Math. J., Volume 51 (2003), pp. 93-109 | DOI | MR | Zbl

[17.] Graber, T.; Vakil, R. Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Volume 130 (2005), pp. 1-37 | DOI | MR | Zbl

[18.] Grushevsky, S.; Zakharov, D. The double ramification cycle and the theta divisor, Proc. Am. Math. Soc., Volume 142 (2014), pp. 4053-4064 | DOI | MR | Zbl

[19.] Hain, R. Normal functions and the geometry of moduli spaces of curves, Handbook of Moduli, vol. I (2013), pp. 527-578

[20.] Heller, I.; Tompkins, C. An extension of a theorem of Dantzig’s, Linear Inequalities and Related Systems (1956), pp. 247-254

[21.] F. Janda, Relations on Mg,n via equivariant Gromov-Witten theory of P1, Alg. Geom., (2017, to appear), | arXiv

[22.] F. Janda, R. Pandharipande, A. Pixton and D. Zvonkine, in preparation.

[23.] Jarvis, T. J. Geometry of the moduli of higher spin curves, Int. J. Math., Volume 11 (2000), pp. 637-663 | MR | Zbl

[24.] Johnson, P.; Pandharipande, R.; Tseng, H.-H. Abelian Hurwitz-Hodge integrals, Mich. Math. J., Volume 60 (2011), pp. 171-198 (arXiv:0803.0499) | DOI | MR | Zbl

[25.] Li, J. A degeneration formula of GW invariants, J. Differ. Geom., Volume 60 (2002), pp. 199-293 | DOI | MR | Zbl

[26.] J. Li, Lecture notes on relative GW-invariants, http://users.ictp.it/~pub_off/lectures/lns019/Jun_Li/Jun_Li.pdf.

[27.] S. Marcus and J. Wise, Stable maps to rational curves and the relative Jacobian, | arXiv

[28.] Mumford, D. Towards an enumerative geometry of the moduli space of curves, Arithmetic and Geometry (1983), pp. 271-328 | DOI

[29.] Okounkov, A.; Pandharipande, R. Gromov-Witten theory, Hurwitz numbers, and completed cycles, Ann. Math., Volume 163 (2006), pp. 517-560 | DOI | MR | Zbl

[30.] Okounkov, A.; Pandharipande, R. Quantum cohomology of the Hilbert scheme of points of the plane, Invent. Math., Volume 179 (2010), pp. 523-557 | DOI | MR | Zbl

[31.] R. Pandharipande and A. Pixton, Relations in the tautological ring of the moduli space of curves, | arXiv

[32.] Pandharipande, R.; Pixton, A.; Zvonkine, D. Relations on Mg,n via 3-spin structures, J. Am. Math. Soc., Volume 28 (2015), pp. 279-309 | DOI | MR | Zbl

[33.] A. Pixton, Conjectural relations in the tautological ring of Mg,n, | arXiv

[34.] A. Pixton, Double ramification cycles and tautological relations on Mg,n, available from the author.

[35.] A. Pixton, On combinatorial properties of the explicit expression for double ramification cycles, in preparation.

[36.] Riemann, B. Theorie der Abel’schen Functionen, J. Reine Angew. Math., Volume 54 (1857), pp. 115-155 | DOI | MR

[37.] Stanley, R. Enumerative Combinatorics: Vol I (1999) | DOI

[38.] van der Geer, G. Cycles on the moduli space of abelian varieties, Moduli of Curves and Abelian Varieties (1999), pp. 65-89 | DOI

  • Politopoulos, Georgios; Sauvaget, Adrien Computations of λ-classes via strata of differentials, Annali di Matematica Pura ed Applicata (1923 -) (2025) | DOI:10.1007/s10231-024-01532-1
  • Cavalieri, Renzo; Markwig, Hannah; Schmitt, Johannes k-leaky double Hurwitz descendants, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2025.26
  • Holmes, D.; Molcho, S.; Pandharipande, R.; Pixton, A.; Schmitt, J. Logarithmic double ramification cycles, Inventiones mathematicae (2025) | DOI:10.1007/s00222-025-01318-z
  • Borot, Gaëtan; Karev, Maksim; Lewański, Danilo On ELSV-type formulae and relations between Ω-integrals via deformations of spectral curves, Journal of Geometry and Physics, Volume 207 (2025), p. 105343 | DOI:10.1016/j.geomphys.2024.105343
  • Blot, Xavier; Lewański, Danilo; Rossi, Paolo; Shadrin, Sergei Stable tree expressions with Omega-classes and double ramification cycles, Journal of Geometry and Physics, Volume 209 (2025), p. 105391 | DOI:10.1016/j.geomphys.2024.105391
  • Cavalieri, Renzo; Owens, Bryson; Somerstep, Seamus All the 𝜆₁’s on cyclic admissible covers, Proceedings of the American Mathematical Society (2025) | DOI:10.1090/proc/17106
  • Molcho, Sam; Ranganathan, Dhruv A case study of intersections on blowups of the moduli of curves, Algebra Number Theory, Volume 18 (2024) no. 10, p. 1767 | DOI:10.2140/ant.2024.18.1767
  • Janda, Felix; Wang, Xin Universal Equations for Higher Genus Gromov–Witten Invariants from Hodge Integrals, Communications in Mathematical Physics, Volume 405 (2024) no. 2 | DOI:10.1007/s00220-024-04931-w
  • Buryak, Alexandr; Rossi, Paolo; Zvonkine, Dimitri Moduli spaces of residueless meromorphic differentials and the KP hierarchy, Geometry Topology, Volume 28 (2024) no. 6, p. 2793 | DOI:10.2140/gt.2024.28.2793
  • Battistella, Luca; Nabijou, Navid; Ranganathan, Dhruv Gromov–Witten theory via roots and logarithms, Geometry Topology, Volume 28 (2024) no. 7, p. 3309 | DOI:10.2140/gt.2024.28.3309
  • Wong, Yiu Man An Algorithm to Compute the Fundamental Classes of Spin Components of Strata of Differentials, International Mathematics Research Notices, Volume 2024 (2024) no. 6, p. 4893 | DOI:10.1093/imrn/rnad208
  • Ranganathan, Dhruv; Kumaran, Ajith Urundolil Logarithmic Gromov–Witten theory and double ramification cycles, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2024) no. 0 | DOI:10.1515/crelle-2023-0100
  • Buryak, A. Yu. DR Hierarchies: From the Moduli Spaces of Curves to Integrable Systems, Proceedings of the Steklov Institute of Mathematics, Volume 325 (2024) no. 1, p. 21 | DOI:10.1134/s0081543824020020
  • Cavalieri, Renzo; Markwig, Hannah; Ranganathan, Dhruv Pluricanonical cycles and tropical covers, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9122
  • Urundolil Kumaran, Ajith; Wu, Longting A new approach to the operator formalism for Gromov-Witten invariants of the cap and tube, Advances in Mathematics, Volume 435 (2023), p. 109357 | DOI:10.1016/j.aim.2023.109357
  • Tseng, Hsian-Hua; You, Fenglong A Gromov–Witten Theory for Simple Normal-Crossing Pairs Without Log Geometry, Communications in Mathematical Physics, Volume 401 (2023) no. 1, p. 803 | DOI:10.1007/s00220-023-04656-2
  • Molcho, S.; Pandharipande, R.; Schmitt, J. The Hodge bundle, the universal 0-section, and the log Chow ring of the moduli space of curves, Compositio Mathematica, Volume 159 (2023) no. 2, p. 306 | DOI:10.1112/s0010437x22007874
  • Chen, Bohui; Du, Cheng-Yong On weighted-blowup formulae of genus zero orbifold Gromov–Witten invariants, Compositio Mathematica, Volume 159 (2023) no. 9, p. 1833 | DOI:10.1112/s0010437x23007315
  • Holmes, David; Orecchia, Giulio Logarithmic moduli of roots of line bundles on curves, Expositiones Mathematicae, Volume 41 (2023) no. 3, p. 577 | DOI:10.1016/j.exmath.2023.04.001
  • Molcho, Sam Smooth Compactifications of the Abel-Jacobi Section, Forum of Mathematics, Sigma, Volume 11 (2023) | DOI:10.1017/fms.2023.83
  • Norbury, Paul A new cohomology class on the moduli space of curves, Geometry Topology, Volume 27 (2023) no. 7, p. 2695 | DOI:10.2140/gt.2023.27.2695
  • Abreu, Alex; Pacini, Marco; Secco, Matheus On moduli spaces of roots in algebraic and tropical geometry, Journal of Algebra, Volume 634 (2023), p. 832 | DOI:10.1016/j.jalgebra.2023.06.015
  • Buryak, Alexandr; Rossi, Paolo A GENERALISATION OF WITTEN’S CONJECTURE FOR THE PIXTON CLASS AND THE NONCOMMUTATIVE KDV HIERARCHY, Journal of the Institute of Mathematics of Jussieu, Volume 22 (2023) no. 6, p. 2987 | DOI:10.1017/s1474748022000354
  • LEWAŃSKI, DANILO On some hyperelliptic Hurwitz–Hodge integrals, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 175 (2023) no. 2, p. 271 | DOI:10.1017/s0305004123000117
  • Borot, Gaëtan; Do, Norman; Karev, Maksim; Lewański, Danilo; Moskovsky, Ellena Double Hurwitz numbers: polynomiality, topological recursion and intersection theory, Mathematische Annalen, Volume 387 (2023) no. 1-2, p. 179 | DOI:10.1007/s00208-022-02457-x
  • Biesel, Owen; Holmes, David Fine Compactified Moduli of Enriched Structures on Stable Curves, Memoirs of the American Mathematical Society, Volume 285 (2023) no. 1416 | DOI:10.1090/memo/1416
  • Clader, Emily; Janda, Felix; Wang, Xin; Zakharov, Dmitry Topological Recursion Relations from Pixton’s Formula, Michigan Mathematical Journal, Volume 73 (2023) no. 2 | DOI:10.1307/mmj/20195795
  • Cheng-Yong, Du Weighted blowup formulae of Gromov-Witten invariants along curves and surfaces, SCIENTIA SINICA Mathematica, Volume 53 (2023) no. 1, p. 65 | DOI:10.1360/ssm-2022-0011
  • Kannan, Siddarth Moduli of relative stable maps to P1: cut-and-paste invariants, Selecta Mathematica, Volume 29 (2023) no. 4 | DOI:10.1007/s00029-023-00857-8
  • Chen, Bo Hui; Du, Cheng Yong; Wang, Rui Double Ramification Cycles with Orbifold Targets, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 8, p. 1333 | DOI:10.1007/s10114-022-1073-y
  • Do, Norman; Lewański, Danilo On the Goulden–Jackson–Vakil conjecture for double Hurwitz numbers, Advances in Mathematics, Volume 403 (2022), p. 108339 | DOI:10.1016/j.aim.2022.108339
  • Zhou, Zijun; Zong, Zhengyu Gromov–Witten theory of [ℂ2∕ℤn+1] × ℙ1, Algebra Number Theory, Volume 16 (2022) no. 1, p. 1 | DOI:10.2140/ant.2022.16.1
  • Blot, Xavier The quantum Witten–Kontsevich series and one-part double Hurwitz numbers, Geometry Topology, Volume 26 (2022) no. 4, p. 1669 | DOI:10.2140/gt.2022.26.1669
  • CELA, A.; PANDHARIPANDE, R.; SCHMITT, J. Tevelev degrees and Hurwitz moduli spaces, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 173 (2022) no. 3, p. 479 | DOI:10.1017/s0305004121000670
  • Tseng, Hsian-Hua; You, Fenglong On the polynomiality of orbifold Gromov–Witten theory of root stacks, Mathematische Zeitschrift, Volume 300 (2022) no. 1, p. 235 | DOI:10.1007/s00209-021-02782-y
  • Abreu, Alex; Pacini, Marco The resolution of the universal Abel map via tropical geometry and applications, Advances in Mathematics, Volume 378 (2021), p. 107520 | DOI:10.1016/j.aim.2020.107520
  • You, Fenglong Gromov–Witten invariants of root stacks with mid-ages and the loop axiom, Advances in Mathematics, Volume 386 (2021), p. 107811 | DOI:10.1016/j.aim.2021.107811
  • Buryak, Alexandr; Rossi, Paolo Quadratic double ramification integrals and the noncommutative KdV hierarchy, Bulletin of the London Mathematical Society, Volume 53 (2021) no. 3, p. 843 | DOI:10.1112/blms.12464
  • Arsie, Alessandro; Buryak, Alexandr; Lorenzoni, Paolo; Rossi, Paolo Flat F-Manifolds, F-CohFTs, and Integrable Hierarchies, Communications in Mathematical Physics, Volume 388 (2021) no. 1, p. 291 | DOI:10.1007/s00220-021-04109-8
  • Holmes, David; Schmitt, Johannes Infinitesimal structure of the pluricanonical double ramification locus, Compositio Mathematica, Volume 157 (2021) no. 10, p. 2280 | DOI:10.1112/s0010437x21007557
  • Bae, Younghan; Buelles, Tim-Henrik Curves on K3 surfaces in divisibility 2, Forum of Mathematics, Sigma, Volume 9 (2021) | DOI:10.1017/fms.2021.6
  • Ruzza, Giulio; Yang, Di On the spectral problem of the quantum KdV hierarchy, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 37, p. 374001 | DOI:10.1088/1751-8121/ac190a
  • Delecroix, Vincent; Schmitt, Johannes; van Zelm, Jason admcycles - a Sage package for calculations in the tautological ring of the moduli space of stable curves, Journal of Software for Algebra and Geometry, Volume 11 (2021) no. 1, p. 89 | DOI:10.2140/jsag.2021.11.89
  • Holmes, David EXTENDING THE DOUBLE RAMIFICATION CYCLE BY RESOLVING THE ABEL-JACOBI MAP, Journal of the Institute of Mathematics of Jussieu, Volume 20 (2021) no. 1, p. 331 | DOI:10.1017/s1474748019000252
  • Fan, H.; Wu, L.; You, F. Higher genus relative Gromov–Witten theory and double ramification cycles, Journal of the London Mathematical Society, Volume 103 (2021) no. 4, p. 1547 | DOI:10.1112/jlms.12417
  • Buryak, Alexandr; Rossi, Paolo; Shadrin, Sergey Towards a bihamiltonian structure for the double ramification hierarchy, Letters in Mathematical Physics, Volume 111 (2021) no. 1 | DOI:10.1007/s11005-020-01341-6
  • Borot, Gaëtan; Kramer, Reinier; Lewanski, Danilo; Popolitov, Alexandr; Shadrin, Sergey Special Cases of the Orbifold Version of Zvonkine’s r-ELSV Formula, Michigan Mathematical Journal, Volume 70 (2021) no. 2 | DOI:10.1307/mmj/1592877614
  • van Ittersum, Jan-Willem; Oberdieck, Georg; Pixton, Aaron Gromov–Witten theory of K3 surfaces and a Kaneko–Zagier equation for Jacobi forms, Selecta Mathematica, Volume 27 (2021) no. 4 | DOI:10.1007/s00029-021-00673-y
  • Tseng, Hsian-Hua; You, Fenglong Higher genus relative and orbifold Gromov–Witten invariants, Geometry Topology, Volume 24 (2020) no. 6, p. 2749 | DOI:10.2140/gt.2020.24.2749
  • Janda, Felix; Pandharipande, Rahul; Pixton, Aaron; Zvonkine, Dimitri Double ramification cycles with target varieties, Journal of Topology, Volume 13 (2020) no. 4, p. 1725 | DOI:10.1112/topo.12174
  • Pagani, Nicola; Ricolfi, Andrea T.; van Zelm, Jason Pullbacks of universal Brill–Noether classes via Abel–Jacobi morphisms, Mathematische Nachrichten, Volume 293 (2020) no. 11, p. 2187 | DOI:10.1002/mana.201800422
  • Marcus, Steffen; Wise, Jonathan Logarithmic compactification of the Abel–Jacobi section, Proceedings of the London Mathematical Society, Volume 121 (2020) no. 5, p. 1207 | DOI:10.1112/plms.12365
  • Chen, Bohui; Du, Cheng-Yong; Wang, Rui Orbifold Gromov-Witten theory of weighted blowups, Science China Mathematics, Volume 63 (2020) no. 12, p. 2475 | DOI:10.1007/s11425-020-1774-x
  • Sauvaget, Adrien Cohomology classes of strata of differentials, Geometry Topology, Volume 23 (2019) no. 3, p. 1085 | DOI:10.2140/gt.2019.23.1085
  • Buryak, Alexandr; Guéré, Jérémy; Rossi, Paolo DR/DZ equivalence conjecture and tautological relations, Geometry Topology, Volume 23 (2019) no. 7, p. 3537 | DOI:10.2140/gt.2019.23.3537
  • Pandharipande, R.; Pixton, A.; Zvonkine, D. Tautological relations via 𝑟-spin structures, Journal of Algebraic Geometry, Volume 28 (2019) no. 3, p. 439 | DOI:10.1090/jag/736
  • Cavalieri, Renzo; Tarasca, Nicola Classes of Weierstrass points on genus 2 curves, Transactions of the American Mathematical Society, Volume 372 (2019) no. 4, p. 2467 | DOI:10.1090/tran/7626
  • Kramer, R.; Lewanski, D.; Popolitov, A.; Shadrin, S. Towards an orbifold generalization of Zvonkine’s 𝑟-ELSV formula, Transactions of the American Mathematical Society, Volume 372 (2019) no. 6, p. 4447 | DOI:10.1090/tran/7793
  • Holmes, David; Kass, Jesse Leo; Pagani, Nicola Extending the double ramification cycle using Jacobians, European Journal of Mathematics, Volume 4 (2018) no. 3, p. 1087 | DOI:10.1007/s40879-018-0256-7
  • Clader, Emily; Janda, Felix Pixton’s double ramification cycle relations, Geometry Topology, Volume 22 (2018) no. 2, p. 1069 | DOI:10.2140/gt.2018.22.1069
  • Pixton, Aaron Generalized Boundary Strata Classes, Geometry of Moduli, Volume 14 (2018), p. 285 | DOI:10.1007/978-3-319-94881-2_9
  • Clader, Emily; Grushevsky, Samuel; Janda, Felix; Zakharov, Dmitry Powers of the Theta Divisor and Relations in the Tautological Ring, International Mathematics Research Notices, Volume 2018 (2018) no. 24, p. 7725 | DOI:10.1093/imrn/rnx115
  • Oberdieck, Georg; Pixton, Aaron Holomorphic anomaly equations and the Igusa cusp form conjecture, Inventiones mathematicae, Volume 213 (2018) no. 2, p. 507 | DOI:10.1007/s00222-018-0794-0
  • Dudin, Bashar Compactified Universal Jacobian and the Double Ramification Cycle, International Mathematics Research Notices (2017), p. rnw313 | DOI:10.1093/imrn/rnw313
  • Buryak, Aleksandr Yurjevich Новые подходы к иерархиям топологического типа, Успехи математических наук, Volume 72 (2017) no. 5(437), p. 63 | DOI:10.4213/rm9777

Cité par 65 documents. Sources : Crossref