We prove a Russo-Seymour-Welsh percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let be a smooth connected bounded open set in and two disjoint arcs of positive length in the boundary of . We prove that there exists a positive constant , such that for any positive scale , with probability at least there exists a connected component of the set intersecting both and , where is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For large enough, the same conclusion holds for the zero set . As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.
@article{PMIHES_2017__126__131_0, author = {Beffara, Vincent and Gayet, Damien}, title = {Percolation of random nodal lines}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {131--176}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {126}, year = {2017}, doi = {10.1007/s10240-017-0093-0}, mrnumber = {3735866}, zbl = {1412.60131}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/} }
TY - JOUR AU - Beffara, Vincent AU - Gayet, Damien TI - Percolation of random nodal lines JO - Publications Mathématiques de l'IHÉS PY - 2017 SP - 131 EP - 176 VL - 126 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/ DO - 10.1007/s10240-017-0093-0 LA - en ID - PMIHES_2017__126__131_0 ER -
%0 Journal Article %A Beffara, Vincent %A Gayet, Damien %T Percolation of random nodal lines %J Publications Mathématiques de l'IHÉS %D 2017 %P 131-176 %V 126 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/ %R 10.1007/s10240-017-0093-0 %G en %F PMIHES_2017__126__131_0
Beffara, Vincent; Gayet, Damien. Percolation of random nodal lines. Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 131-176. doi : 10.1007/s10240-017-0093-0. http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/
[1.] Random Fields and Geometry (2007) | Zbl
[2.] Hölder regularity and dimension bounds for random curves, Duke Math. J., Volume 99 (1998), p. 41 | Zbl
[3.] Boundedness of level lines for two-dimensional random fields, Ann. Probab., Volume 24 (1996), pp. 1653-1674 | DOI | MR | Zbl
[4.] Topologie Des Hypersurfaces Nodales De Fonctions Aléatoires Gaussiennes, Astérisque, Volume 390 (2017), pp. 369-408 | Zbl
[5.] Level Sets and Extrema of Random Processes and Fields (2009) | DOI | Zbl
[6.] D. Basu and A. Sapozhnikov, Crossing probabilities for critical Bernoulli percolation on slabs, preprint, pp. 1–14 (2015).
[7.] Planar percolation with a glimpse of Schramm–Loewner evolution, Probab. Surv., Volume 10 (2013), pp. 1-50 | DOI | MR | Zbl
[8.] On the Bogomolny-Schmit conjecture, J. Phys. A, Math. Theor., Volume 46 (2013), p. 5 | DOI | MR | Zbl
[9.] D. Beliaev and S. Muirhead, Discretisation schemes for level sets of planar Gaussian fields, 2017. | arXiv
[10.] Volume des ensembles nodaux des fonctions propres du laplacien, Bony-Sjöstrand-Meyer Seminar (1985) (Exp. No. 14, 10)
[11.] Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., Volume 142 (2000), pp. 351-395 | DOI | MR | Zbl
[12.] SLE description of the nodal lines of random wavefunctions, J. Phys. A, Math. Theor., Volume 40 (2007), pp. 381-395 | DOI | MR | Zbl
[13.] Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett., Volume 88 (2002) | DOI
[14.] Random wavefunctions and percolation, J. Phys. A, Math. Theor., Volume 40 (2007), pp. 14033-14043 | DOI | MR | Zbl
[15.] The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Relat. Fields, Volume 136 (2004), pp. 417-468 | DOI | MR | Zbl
[16.] Percolation processes, Math. Proc. Camb. Philos. Soc., Volume 53 (1957), p. 629 | DOI | MR | Zbl
[17.] Two-dimensional critical percolation: the full scaling limit, Commun. Math. Phys., Volume 268 (2006), pp. 1-38 | DOI | MR | Zbl
[18.] Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure Appl. Math., Volume 64 (2011), pp. 1165-1198 | DOI | MR | Zbl
[19.] Median and mean of the supremum of normalized random holomorphic fields, J. Funct. Anal., Volume 266 (2014), pp. 5085-5107 | DOI | MR | Zbl
[20.] D. Gayet and J.-Y. Welschinger, Exponential rarefaction of real curves with many components, Publ. Math. Inst. Hautes Études Sci. (2011), 69–96. doi:. | DOI
[21.] D. Gayet and J.-Y. Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math. (2014, to appear). | arXiv
[22.] Lower estimates for the expected Betti numbers of random real hypersurfaces, J. Lond. Math. Soc. (2), Volume 90 (2014), pp. 105-120 | DOI | MR | Zbl
[23.] D. Gayet and J.-Y. Welschinger, What is the total Betti number of a random real hypersurface? J. Reine Angew. Math. (2014), 137–168. doi:. | DOI
[24.] D. Gayet and J.-Y. Welschinger, Universal components of random nodal sets, Commun. Math. Phys. (2015, to appear). doi:. | arXiv | DOI
[25.] Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc., Volume 18 (2016), pp. 733-772 | DOI | MR | Zbl
[26.] Percolation (1999) | DOI | Zbl
[27.] Abstract Wiener spaces, Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/1966 2, Part 1 (1967), pp. 31-42
[28.] A lower bound for the critical probability in a certain percolation process, Math. Proc. Camb. Philos. Soc., Volume 56 (1960), pp. 13-20 | DOI | MR | Zbl
[29.] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[30.] The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., Volume 74 (1980), pp. 41-59 | DOI | MR | Zbl
[31.] On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (1993), pp. 419-431 | DOI
[32.] Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., Volume 270 (2016), pp. 3047-3110 | DOI | MR | Zbl
[33.] Percolation in random fields. II, Theor. Math. Phys., Volume 55 (1983), pp. 592-599 | DOI | MR
[34.] On the number of nodal domains of random spherical harmonics, Am. J. Math., Volume 131 (2009), pp. 1337-1357 | DOI | MR | Zbl
[35.] Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom., Volume 12 (2016), pp. 205-278 | MR | Zbl
[36.] Critical percolation and the minimal spanning tree in slabs, Commun. Pure Appl. Math., Volume 1 (2017), pp. 1-35 | Zbl
[37.] Positively correlated normal variables are associated, Ann. Probab., Volume 10 (1982), pp. 496-499 | DOI | MR | Zbl
[38.] The mean value of the Euler characteristic of an algebraic hypersurface, Algebra Anal., Volume 11 (1999), pp. 185-193
[39.] A note on percolation, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978), pp. 39-48 | DOI | MR | Zbl
[40.] Percolation probabilities on the square lattice, Ann. Discrete Math., Volume 3 (1978), pp. 227-245 | DOI | MR | Zbl
[41.] Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999), pp. 661-683 | DOI | MR | Zbl
[42.] Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational Algebraic Geometry (1993), pp. 267-285 | DOI
[43.] Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001), pp. 239-244 | DOI | MR | Zbl
[44.] Crossing probabilities for Voronoi percolation, Ann. Probab., Volume 44 (2016), pp. 3385-3398 | DOI | MR | Zbl
[45.] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990), pp. 99-130 | DOI | Zbl
[46.] S. Zelditch, Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998), 317–331. doi:. | DOI
Cité par Sources :