Percolation of random nodal lines
Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 131-176.

We prove a Russo-Seymour-Welsh percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let U be a smooth connected bounded open set in R2 and γ,γ two disjoint arcs of positive length in the boundary of U. We prove that there exists a positive constant c, such that for any positive scale s, with probability at least c there exists a connected component of the set {xU¯,f(sx)>0} intersecting both γ and γ, where f is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For s large enough, the same conclusion holds for the zero set {xU¯,f(sx)=0}. As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.

DOI : 10.1007/s10240-017-0093-0
Beffara, Vincent 1 ; Gayet, Damien 1

1 Univ. Grenoble Alpes, CNRS, Institut Fourier 38000 Grenoble France
@article{PMIHES_2017__126__131_0,
     author = {Beffara, Vincent and Gayet, Damien},
     title = {Percolation of random nodal lines},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {131--176},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {126},
     year = {2017},
     doi = {10.1007/s10240-017-0093-0},
     mrnumber = {3735866},
     zbl = {1412.60131},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/}
}
TY  - JOUR
AU  - Beffara, Vincent
AU  - Gayet, Damien
TI  - Percolation of random nodal lines
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 131
EP  - 176
VL  - 126
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/
DO  - 10.1007/s10240-017-0093-0
LA  - en
ID  - PMIHES_2017__126__131_0
ER  - 
%0 Journal Article
%A Beffara, Vincent
%A Gayet, Damien
%T Percolation of random nodal lines
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 131-176
%V 126
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/
%R 10.1007/s10240-017-0093-0
%G en
%F PMIHES_2017__126__131_0
Beffara, Vincent; Gayet, Damien. Percolation of random nodal lines. Publications Mathématiques de l'IHÉS, Tome 126 (2017), pp. 131-176. doi : 10.1007/s10240-017-0093-0. http://archive.numdam.org/articles/10.1007/s10240-017-0093-0/

[1.] Adler, R. J.; Taylor, J. E. Random Fields and Geometry (2007) | Zbl

[2.] Aizenman, M.; Burchard, A. Hölder regularity and dimension bounds for random curves, Duke Math. J., Volume 99 (1998), p. 41 | Zbl

[3.] Alexander, K. S. Boundedness of level lines for two-dimensional random fields, Ann. Probab., Volume 24 (1996), pp. 1653-1674 | DOI | MR | Zbl

[4.] Anantharaman, N. Topologie Des Hypersurfaces Nodales De Fonctions Aléatoires Gaussiennes, Astérisque, Volume 390 (2017), pp. 369-408 | Zbl

[5.] Azaïs, J.-M.; Wschebor, M. Level Sets and Extrema of Random Processes and Fields (2009) | DOI | Zbl

[6.] D. Basu and A. Sapozhnikov, Crossing probabilities for critical Bernoulli percolation on slabs, preprint, pp. 1–14 (2015).

[7.] Beffara, V.; Duminil-Copin, H. Planar percolation with a glimpse of Schramm–Loewner evolution, Probab. Surv., Volume 10 (2013), pp. 1-50 | DOI | MR | Zbl

[8.] Beliaev, D.; Kereta, Z. On the Bogomolny-Schmit conjecture, J. Phys. A, Math. Theor., Volume 46 (2013), p. 5 | DOI | MR | Zbl

[9.] D. Beliaev and S. Muirhead, Discretisation schemes for level sets of planar Gaussian fields, 2017. | arXiv

[10.] Bérard, P. Volume des ensembles nodaux des fonctions propres du laplacien, Bony-Sjöstrand-Meyer Seminar (1985) (Exp. No. 14, 10)

[11.] Bleher, P.; Shiffman, B.; Zelditch, S. Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., Volume 142 (2000), pp. 351-395 | DOI | MR | Zbl

[12.] Bogomolny, E.; Dubertrand, R.; Schmit, C. SLE description of the nodal lines of random wavefunctions, J. Phys. A, Math. Theor., Volume 40 (2007), pp. 381-395 | DOI | MR | Zbl

[13.] Bogomolny, E.; Schmit, C. Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett., Volume 88 (2002) | DOI

[14.] Bogomolny, E.; Schmit, C. Random wavefunctions and percolation, J. Phys. A, Math. Theor., Volume 40 (2007), pp. 14033-14043 | DOI | MR | Zbl

[15.] Bollobas, B.; Riordan, O. The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Relat. Fields, Volume 136 (2004), pp. 417-468 | DOI | MR | Zbl

[16.] Broadbent, S. R.; Hammersley, J. M. Percolation processes, Math. Proc. Camb. Philos. Soc., Volume 53 (1957), p. 629 | DOI | MR | Zbl

[17.] Camia, F.; Newman, C. M. Two-dimensional critical percolation: the full scaling limit, Commun. Math. Phys., Volume 268 (2006), pp. 1-38 | DOI | MR | Zbl

[18.] Duminil-Copin, H.; Hongler, C.; Nolin, P. Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure Appl. Math., Volume 64 (2011), pp. 1165-1198 | DOI | MR | Zbl

[19.] Feng, R.; Zelditch, S. Median and mean of the supremum of L2 normalized random holomorphic fields, J. Funct. Anal., Volume 266 (2014), pp. 5085-5107 | DOI | MR | Zbl

[20.] D. Gayet and J.-Y. Welschinger, Exponential rarefaction of real curves with many components, Publ. Math. Inst. Hautes Études Sci. (2011), 69–96. doi:. | DOI

[21.] D. Gayet and J.-Y. Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math. (2014, to appear). | arXiv

[22.] Gayet, D.; Welschinger, J.-Y. Lower estimates for the expected Betti numbers of random real hypersurfaces, J. Lond. Math. Soc. (2), Volume 90 (2014), pp. 105-120 | DOI | MR | Zbl

[23.] D. Gayet and J.-Y. Welschinger, What is the total Betti number of a random real hypersurface? J. Reine Angew. Math. (2014), 137–168. doi:. | DOI

[24.] D. Gayet and J.-Y. Welschinger, Universal components of random nodal sets, Commun. Math. Phys. (2015, to appear). doi:. | arXiv | DOI

[25.] Gayet, D.; Welschinger, J.-Y. Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc., Volume 18 (2016), pp. 733-772 | DOI | MR | Zbl

[26.] Grimmett, G. Percolation (1999) | DOI | Zbl

[27.] Gross, L. Abstract Wiener spaces, Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/1966 2, Part 1 (1967), pp. 31-42

[28.] Harris, T. E. A lower bound for the critical probability in a certain percolation process, Math. Proc. Camb. Philos. Soc., Volume 56 (1960), pp. 13-20 | DOI | MR | Zbl

[29.] Hörmander, L. The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl

[30.] Kesten, H. The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., Volume 74 (1980), pp. 41-59 | DOI | MR | Zbl

[31.] Kostlan, E. On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (1993), pp. 419-431 | DOI

[32.] Letendre, T. Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., Volume 270 (2016), pp. 3047-3110 | DOI | MR | Zbl

[33.] Molchanov, S. A.; Stepanov, A. K. Percolation in random fields. II, Theor. Math. Phys., Volume 55 (1983), pp. 592-599 | DOI | MR

[34.] Nazarov, F.; Sodin, M. On the number of nodal domains of random spherical harmonics, Am. J. Math., Volume 131 (2009), pp. 1337-1357 | DOI | MR | Zbl

[35.] Nazarov, F.; Sodin, M. Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom., Volume 12 (2016), pp. 205-278 | MR | Zbl

[36.] Newman, C. M.; Tassion, V.; Wu, W. Critical percolation and the minimal spanning tree in slabs, Commun. Pure Appl. Math., Volume 1 (2017), pp. 1-35 | Zbl

[37.] Pitt, L. D. Positively correlated normal variables are associated, Ann. Probab., Volume 10 (1982), pp. 496-499 | DOI | MR | Zbl

[38.] Podkorytov, S. S. The mean value of the Euler characteristic of an algebraic hypersurface, Algebra Anal., Volume 11 (1999), pp. 185-193

[39.] Russo, L. A note on percolation, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978), pp. 39-48 | DOI | MR | Zbl

[40.] Seymour, P. D.; Welsh, D. J. A. Percolation probabilities on the square lattice, Ann. Discrete Math., Volume 3 (1978), pp. 227-245 | DOI | MR | Zbl

[41.] Shiffman, B.; Zelditch, S. Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999), pp. 661-683 | DOI | MR | Zbl

[42.] Shub, M.; Smale, S. Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational Algebraic Geometry (1993), pp. 267-285 | DOI

[43.] Smirnov, S. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001), pp. 239-244 | DOI | MR | Zbl

[44.] Tassion, V. Crossing probabilities for Voronoi percolation, Ann. Probab., Volume 44 (2016), pp. 3385-3398 | DOI | MR | Zbl

[45.] Tian, G. On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990), pp. 99-130 | DOI | Zbl

[46.] S. Zelditch, Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998), 317–331. doi:. | DOI

Cité par Sources :