We prove some ergodic-theoretic rigidity properties of the action of on moduli space. In particular, we show that any ergodic measure invariant under the action of the upper triangular subgroup of is supported on an invariant affine submanifold.
The main theorems are inspired by the results of several authors on unipotent flows on homogeneous spaces, and in particular by Ratner’s seminal work.
@article{PMIHES_2018__127__95_0, author = {Eskin, Alex and Mirzakhani, Maryam}, title = {Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on {Moduli} space}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {95--324}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {127}, year = {2018}, doi = {10.1007/s10240-018-0099-2}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-018-0099-2/} }
TY - JOUR AU - Eskin, Alex AU - Mirzakhani, Maryam TI - Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on Moduli space JO - Publications Mathématiques de l'IHÉS PY - 2018 SP - 95 EP - 324 VL - 127 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-018-0099-2/ DO - 10.1007/s10240-018-0099-2 LA - en ID - PMIHES_2018__127__95_0 ER -
%0 Journal Article %A Eskin, Alex %A Mirzakhani, Maryam %T Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on Moduli space %J Publications Mathématiques de l'IHÉS %D 2018 %P 95-324 %V 127 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-018-0099-2/ %R 10.1007/s10240-018-0099-2 %G en %F PMIHES_2018__127__95_0
Eskin, Alex; Mirzakhani, Maryam. Invariant and stationary measures for the $\mathrm{SL} (2 , \mathbb{R})$ action on Moduli space. Publications Mathématiques de l'IHÉS, Tome 127 (2018), pp. 95-324. doi : 10.1007/s10240-018-0099-2. http://archive.numdam.org/articles/10.1007/s10240-018-0099-2/
[ABEM] Lattice point asymptotics and volume growth on Teichmüller space, Duke Math. J., Volume 161 (2012), pp. 1055-1111 | DOI | MR | Zbl
[At] Recurrence of co-cycles and random walks, J. Lond. Math. Soc. (2), Volume 13 (1976), pp. 486-488 | DOI | MR | Zbl
[Ath] Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedic., Volume 119 (2006), pp. 121-140 | DOI | Zbl
[AthF] Deviation of ergodic averages for rational polygonal billiards, Duke Math. J., Volume 144 (2008), pp. 285-319 | DOI | MR | Zbl
[ACO] Normal form for linear cocycles, Random Oper. Stoch. Equ., Volume 7 (1999), pp. 301-356 | MR
[AEZ] Rectangular billiards and volumes of spaces of quadratic differentials on , Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016), pp. 1311-1386 (with an appendix by Jon Chaika) | DOI | MR | Zbl
[ANW] Classification of higher rank orbit closures in , J. Eur. Math. Soc., Volume 18 (2016), pp. 1855-1872 | DOI | MR | Zbl
[AEM] Symplectic and isometric invariant subbundles of the Hodge bundle, J. Reine Angew. Math., Volume 732 (2017), pp. 1-20 | DOI | MR | Zbl
[AG] Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. Math. (2), Volume 178 (2013), pp. 385-442 | DOI | MR | Zbl
[AGY] Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., Volume 104 (2006), pp. 143-211 | DOI | Zbl
[AV2] Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math., Volume 181 (2010), pp. 115-189 | DOI | MR | Zbl
[ASV] Cocycles over partially hyperbolic maps, Astérisque, Volume 358 (2013), pp. 1-12 | MR | Zbl
[AV1] Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., Volume 198 (2007), pp. 1-56 | DOI | MR | Zbl
[Ba] Billiards in -shaped tables with barriers, Geom. Funct. Anal., Volume 20 (2010), pp. 299-356 | DOI | MR | Zbl
[BaM] Deligne-Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3, Acta Math., Volume 208 (2012), pp. 1-92 | DOI | MR | Zbl
[BoM] Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. Math. (2), Volume 172 (2010), pp. 139-185 | DOI | MR | Zbl
[BQ] Mesures Stationnaires et Fermés Invariants des espaces homogènes, Ann. Math. (2), Volume 174 (2011), pp. 1111-1162 (French) [Stationary measures and invariant subsets of homogeneous spaces] | DOI | MR | Zbl
[BG] Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials, Mat. Sb., Volume 202 (2011), pp. 3-42 (Russian), translation in Sb. Math. 202 (2011), 935–970 | DOI | MR | Zbl
[Ca] Veech surfaces and complete periodicity in genus two, J. Am. Math. Soc., Volume 17 (2004), pp. 871-908 | DOI | MR | Zbl
[CK] V. Climenhaga and A. Katok, Measure theory through dynamical eyes, | arXiv
[CW] On unipotent flows in, Ergod. Theory Dyn. Syst., Volume 30 (2010), pp. 379-398 | DOI | MR | Zbl
[Dan1] On invariant measures, minimal sets and a lemma of Margulis, Invent. Math., Volume 51 (1979), pp. 239-260 | DOI | MR | Zbl
[Dan2] Invariant measures and minimal sets of horoshperical flows, Invent. Math., Volume 64 (1981), pp. 357-385 | DOI | MR | Zbl
[Dan3] On orbits of unipotent flows on homogeneous spaces, Ergod. Theory Dyn. Syst., Volume 4 (1984), pp. 25-34 | DOI | MR | Zbl
[Dan4] On orbits of unipotent flows on homogenous spaces II, Ergod. Theory Dyn. Syst., Volume 6 (1986), pp. 167-182 | Zbl
[De] Encyclopaedia of Distances, Springer, Berlin, 2014 | Zbl
[DM1] Values of quadratic forms at primitive integral points, Invent. Math., Volume 98 (1989), pp. 405-424 | DOI | MR | Zbl
[DM2] Orbit closures of generic unipotent flows on homogeneous spaces of , Math. Ann., Volume 286 (1990), pp. 101-128 | DOI | MR | Zbl
[DM3] Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Indian Acad. Sci. J., Volume 101 (1991), pp. 1-17 | MR | Zbl
[DM4] Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gelfand Seminar, Am. Math. Soc., Providence, 1993, pp. 91-137 | DOI
[Ef] Transformation groups and -algebras, Ann. Math. (2), Volume 81 (1965), pp. 38-55 | DOI | MR | Zbl
[EKL] Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. Math. (2), Volume 164 (2006), pp. 513-560 | DOI | MR | Zbl
[EL] Diagonal actions on locally homogeneous spaces, Homogeneous Flows, Moduli Spaces and Arithmetic, Am. Math. Soc., Providence, 2010, pp. 155-241 | Zbl
[EMa] Asymptotic formulas on flat surfaces, Ergod. Theory Dyn. Syst., Volume 21 (2001), pp. 443-478 | DOI | MR | Zbl
[EMM] Unipotent flows on the space of branched covers of Veech surfaces, Ergod. Theory Dyn. Syst., Volume 26 (2006), pp. 129-162 | DOI | MR | Zbl
[EMM1] Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. Math. (2), Volume 147 (1998), pp. 93-141 | DOI | MR | Zbl
[EMM2] Quadratic forms of signature and eigenvalue spacings on flat -tori, Ann. Math. (2), Volume 161 (2005), pp. 679-725 | DOI | MR | Zbl
[EMiMo] Isolation, equidistribution, and orbit closures for the action on moduli space, Ann. Math. (2), Volume 182 (2015), pp. 673-721 | DOI | MR | Zbl
[EMR] A. Eskin, M. Mirzakhani and K. Rafi, Counting closed geodesics in strata, 2012, | arXiv
[EMS] Billiards in rectangles with barriers, Duke Math. J., Volume 118 (2003), pp. 427-463 | DOI | MR | Zbl
[EMZ] Moduli spaces of Abelian differentials: the principal boundary, counting problems and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci., Volume 97 (2003), pp. 61-179 | DOI | MR | Zbl
[EMat] A. Eskin and C. Matheus, Semisimplicity of the Lyapunov spectrum for irreducible cocycles, preprint.
[Fo] Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math., Volume 155 (2002), pp. 1-103 | DOI | MR | Zbl
[Fo2] On the Lyapunov exponents of the Kontsevich-Zorich cocycle, Handbook of Dynamical Systems, vol. 1B, Elsevier, Amsterdam, 2006, pp. 549-580 | DOI | Zbl
[FoM] G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, 2008, | arXiv
[FoMZ] Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergod. Theory Dyn. Syst., Volume 34 (2014), pp. 353-408 | DOI | MR | Zbl
[Fu] Random walks on groups and random transformations, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2002, pp. 931-1014
[F1] A Poisson formula for semi-simple Lie groups, Ann. Math., Volume 77 (1963), pp. 335-386 | DOI | MR | Zbl
[F2] Non commuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377-428 | DOI | Zbl
[Fi1] Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., Volume 205 (2016), pp. 617-670 | DOI | MR | Zbl
[Fi2] Splitting mixed Hodge structures over affine invariant manifolds, Ann. Math. (2), Volume 183 (2016), pp. 681-713 | DOI | MR | Zbl
[GM] Lyapunov indices of a product of random matrices, Russ. Math. Surv., Volume 44 (1989), pp. 11-71 | DOI
[GR1] Frontiere de Furstenberg, propriotes de contraction et theoremes de convergence, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 69 (1985), pp. 187-242 | DOI | Zbl
[GR2] Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Isr. J. Math., Volume 65 (1989), pp. 165-196 (French) [Contraction properties of an invertible matrix semigroup. Lyapunov coefficients of a product of independent random matrices] | DOI | Zbl
[HLM] -orbit closures via topological splittings, Geometry of Riemann Surfaces and Their Moduli Spaces, International Press, Somerville, 2009, pp. 145-169
[HST] Modular fibers and illumination problems, Int. Math. Res. Not., Volume 2008 (2008) | MR | Zbl
[Ka] On the notion of recurrence in discrete stochastic processes, Bull. Am. Math. Soc., Volume 53 (1947), pp. 1002-1010 | DOI | MR | Zbl
[Ke] Sums of stationary sequences cannot grow slower than linearly, Proc. Am. Math. Soc., Volume 49 (1975), pp. 205-211 | DOI | MR | Zbl
[Kn] Lie Groups, Beyond an Introduction, Birkhäuser, Boston, 2002 | Zbl
[KS] Cocycles with one exponent over partially hyperbolic systems, Geom. Dedic., Volume 167 (2013), pp. 167-188 | DOI | MR | Zbl
[KH] Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995 | DOI
[KuSp] Separation of real algebraic sets and the Łojasiewicz exponent, Proc. Am. Math. Soc., Volume 142 (2014), pp. 3089-3102 | DOI | Zbl
[LN1] Teichmueller curves generated by Weierstrass Prym eigenforms in genus three and genus four, J. Topol., Volume 7 (2014), pp. 475-522 | DOI | MR | Zbl
[LN2] Complete periodicity of Prym eigenforms, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016), pp. 87-130 | DOI | MR | Zbl
[LN3] -orbits in Prym eigenform loci, Geom. Topol., Volume 20 (2016), pp. 1359-1426 | DOI | MR | Zbl
[L] Positivity of the exponent for stationary sequences of matrices, Lyapunov Exponents (1986), pp. 56-73 | DOI
[LS] A proof of the estimation from below in Pesin’s entropy formula, Ergod. Theory Dyn. Syst., Volume 2 (1982), pp. 203-219 | DOI | MR | Zbl
[LY] The metric entropy of diffeomorphisms. I, Ann. Math., Volume 122 (1985), pp. 503-539 | Zbl
[M1] A proof of Pesin’s formula, Ergod. Theory Dyn. Syst., Volume 1 (1981), pp. 95-102 | DOI | MR | Zbl
[M2] Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987 | DOI | Zbl
[Mar1] On the action of unipotent groups in the space of lattices, Lie Groups and Their Representations, Proc. of Summer School in Group Representations (1975), pp. 365-370
[Mar2] Formes quadratiques indèfinies et flots unipotents sur les spaces homogènes, C. R. Acad. Sci. Paris Ser. I, Volume 304 (1987), pp. 247-253 | Zbl
[Mar3] Discrete subgroups and ergodic theory, Number Theory, Trace Formulas and Discrete Subgroups, a Symposium in Honor of a Selberg, Academic Press, Boston, 1989, pp. 377-398
[Mar4] Indefinite quadratic forms and unipotent flows on homogeneous spaces, Dynamical Systems and Ergodic Theory, Banach Center Publ., PWN—Polish Scientific Publ., Warsaw, 1989, pp. 399-409
[MaT] Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., Volume 116 (1994), pp. 347-392 | DOI | MR | Zbl
[Mas1] Interval exchange transformations and measured foliations, Ann. Math. (2), Volume 115 (1982), pp. 169-200 | DOI | MR | Zbl
[Mas2] The growth rate of trajectories of a quadratic differential, Ergod. Theory Dyn. Syst., Volume 10 (1990), pp. 151-176 | DOI | MR | Zbl
[Mas3] Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential (Drasin, D., ed.), Holomorphic Functions and Moduli, Springer, New York, 1988, pp. 215-228 | DOI
[MW] Hodge-Teichmueller planes and finiteness results for Teichmueller curves, Duke Math. J., Volume 164 (2015), pp. 1041-1077 | DOI | MR | Zbl
[Mc1] Billiards and Teichmüller curves on Hilbert modular surfaces, J. Am. Math. Soc., Volume 16 (2003), pp. 857-885 | DOI | Zbl
[Mc2] Teichmüller geodesics of infinite complexity, Acta Math., Volume 191 (2003), pp. 191-223 | DOI | MR | Zbl
[Mc3] Teichmüller curves in genus two: discriminant and spin, Math. Ann., Volume 333 (2005), pp. 87-130 | DOI | MR | Zbl
[Mc4] Teichmüller curves in genus two: the decagon and beyond, J. Reine Angew. Math., Volume 582 (2005), pp. 173-200 | DOI | MR | Zbl
[Mc5] Teichmüller curves in genus two: torsion divisors and ratios of sines, Invent. Math., Volume 165 (2006), pp. 651-672 | DOI | MR | Zbl
[Mc6] Dynamics of over moduli space in genus two, Ann. Math. (2), Volume 165 (2007), pp. 397-456 | DOI | MR | Zbl
[Mö1] Variations of Hodge structures of a Teichmüller curve, J. Am. Math. Soc., Volume 19 (2006), pp. 327-344 | DOI | Zbl
[Mö2] Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, Invent. Math., Volume 165 (2006), pp. 633-649 | DOI | MR | Zbl
[Mö3] Finiteness results for Teichmüller curves, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 63-83 | DOI | MR | Zbl
[Mö4] Linear manifolds in the moduli space of one-forms, Duke Math. J., Volume 144 (2008), pp. 447-488 | DOI | MR | Zbl
[Mor] Ratner’s Theorems on Unipotent Flows, University of Chicago Press, Chicago, 2005 (arXiv:math/0310402 [math.DS]) | Zbl
[Moz] Epimorphic subgroups and invariant measures, Ergod. Theory Dyn. Syst., Volume 15 (1995), pp. 1207-1210 | DOI | MR | Zbl
[MoSh] On the space of ergodic invariant measures of unipotent flows, Ergod. Theory Dyn. Syst., Volume 15 (1995), pp. 149-159 | MR | Zbl
[MZ] Ergodic Theory, Groups, and Geometry, Am. Math. Soc., Providence, 2008 (x+87 pp. Published for the Conference Board of the Mathematical Sciences, Washington, DC) | Zbl
[NW] Non-Veech surfaces in are generic, Geom. Funct. Anal., Volume 24 (2014), pp. 1316-1335 | DOI | MR | Zbl
[NZ] Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math., Volume 138 (1999), pp. 229-252 | DOI | MR | Zbl
[Ra1] Rigidity of horocycle flows, Ann. Math., Volume 115 (1982), pp. 597-614 | DOI | MR | Zbl
[Ra2] Factors of horocycle flows, Ergod. Theory Dyn. Syst., Volume 2 (1982), pp. 465-489 | DOI | MR | Zbl
[Ra3] Horocycle flows, joinings and rigidity of products, Ann. Math., Volume 118 (1983), pp. 277-313 | DOI | MR | Zbl
[Ra4] Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math., Volume 101 (1990), pp. 449-482 | DOI | MR | Zbl
[Ra5] On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., Volume 165 (1990), pp. 229-309 | DOI | MR | Zbl
[Ra6] On Raghunathan’s measure conjecture, Ann. Math., Volume 134 (1991), pp. 545-607 | DOI | MR | Zbl
[Ra7] Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991), pp. 235-280 | DOI | MR | Zbl
[R] Lectures on the theory of entropy of transformations with invariant measures, Russ. Math. Surv., Volume 22 (1967), pp. 1-54 | DOI | Zbl
[Sch] Amenability, Kazhdan’s property , strong ergodicity and invariant means for ergodic group-actions, Ergod. Theory Dyn. Syst., Volume 1 (1981), pp. 223-236 | DOI | MR | Zbl
[Ve1] Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 15 (1982), pp. 201-242 | DOI | MR | Zbl
[Ve2] Siegel measures, Ann. Math., Volume 148 (1998), pp. 895-944 | DOI | MR | Zbl
[Wr1] The field of definition of affine invariant submanifolds of the moduli space of Abelian differentials, Geom. Topol., Volume 18 (2014), pp. 1323-1341 | DOI | MR | Zbl
[Wr2] Cylinder deformations in orbit closures of translation surfaces, Geom. Topol., Volume 19 (2015), pp. 413-438 | DOI | MR | Zbl
[WWF] Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition, Pattern Recognit., Volume 39 (2006), pp. 456-464 | DOI | Zbl
[Zi1] Induced and amenable ergodic actions of Lie groups, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978), pp. 407-428 | DOI | MR | Zbl
[Zi2] Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984 | DOI | Zbl
[Zo] Flat Surfaces, Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, pp. 437-583 | DOI
Cité par Sources :