For a prime , we construct integral models over for Shimura varieties with parahoric level structure, attached to Shimura data of abelian type, such that splits over a tamely ramified extension of . The local structure of these integral models is related to certain “local models”, which are defined group theoretically. Under some additional assumptions, we show that these integral models satisfy a conjecture of Kottwitz which gives an explicit description for the trace of Frobenius action on their sheaf of nearby cycles.
@article{PMIHES_2018__128__121_0, author = {Kisin, M. and Pappas, G.}, title = {Integral models of {Shimura} varieties with parahoric level structure}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {121--218}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {128}, year = {2018}, doi = {10.1007/s10240-018-0100-0}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-018-0100-0/} }
TY - JOUR AU - Kisin, M. AU - Pappas, G. TI - Integral models of Shimura varieties with parahoric level structure JO - Publications Mathématiques de l'IHÉS PY - 2018 SP - 121 EP - 218 VL - 128 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-018-0100-0/ DO - 10.1007/s10240-018-0100-0 LA - en ID - PMIHES_2018__128__121_0 ER -
%0 Journal Article %A Kisin, M. %A Pappas, G. %T Integral models of Shimura varieties with parahoric level structure %J Publications Mathématiques de l'IHÉS %D 2018 %P 121-218 %V 128 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-018-0100-0/ %R 10.1007/s10240-018-0100-0 %G en %F PMIHES_2018__128__121_0
Kisin, M.; Pappas, G. Integral models of Shimura varieties with parahoric level structure. Publications Mathématiques de l'IHÉS, Tome 128 (2018), pp. 121-218. doi : 10.1007/s10240-018-0100-0. http://archive.numdam.org/articles/10.1007/s10240-018-0100-0/
[1.] Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 5-79
[2.] Galois cohomology of the classical groups over fields of cohomological dimension , Invent. Math., Volume 122 (1995), pp. 195-229 | DOI | MR | Zbl
[3.] Classical groups and the Hasse principle, Ann. Math. (2), Volume 147 (1998), pp. 651-693 | DOI | MR | Zbl
[4.] -isocrystals and de Rham cohomology. I, Invent. Math., Volume 72 (1983), pp. 159-199 | DOI | MR | Zbl
[5.] A -adic property of Hodge classes on abelian varieties, Motives (1994), pp. 293-308 | DOI
[6.] Néron Models, Springer, Berlin, 1990 | DOI | Zbl
[7.] Lie Groups and Lie Algebras, Springer, Berlin, 2005 (Chaps. 7–9, translated from the 1975 and 1982 French originals by Andrew Pressley) | Zbl
[8.] Groupes -divisibles, groupes finis et modules filtrés, Ann. Math. (2), Volume 152 (2000), pp. 489-549 | DOI | MR | Zbl
[9.] -torsors over a Dedekind scheme, J. Pure Appl. Algebra, Volume 217 (2013), pp. 11-19 | DOI | MR | Zbl
[10.] Groupes réductifs sur un corps local, Publ. Math. IHÉS, Volume 41 (1972), pp. 5-251 | DOI | Zbl
[11.] Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. IHÉS, Volume 60 (1984), pp. 197-376 | DOI | Zbl
[12.] Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. Fr., Volume 112 (1984), pp. 259-301 | DOI | Zbl
[13.] Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. Fr., Volume 115 (1987), pp. 141-195 | DOI | Zbl
[14.] Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps -adique, Invent. Math., Volume 159 (2005), pp. 589-606 | DOI | MR | Zbl
[15.] Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., Volume 618 (2008), pp. 77-133 | MR | Zbl
[16.] Fibrés quadratiques et composantes connexes réelles, Math. Ann., Volume 244 (1979), pp. 105-134 | DOI | MR | Zbl
[17.] B. Conrad, Reductive group schemes, Notes for the SGA3 Summer School, Luminy 2011, http://math.stanford.edu/~conrad/papers/luminysga3.pdf.
[18.] The moduli spaces of principally polarized abelian varieties with -level structure, J. Algebraic Geom., Volume 2 (1993), pp. 667-688 | MR | Zbl
[19.] Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci., Volume 82 (1995), pp. 5-96 | DOI | Zbl
[20.] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic Forms, Representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ.), Part 2 (1977), pp. 247-289
[21.] Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compos. Math., Volume 90 (1994), pp. 59-79 | Zbl
[22.] Néron models and tame ramification, Compos. Math., Volume 81 (1992), pp. 291-306 | Zbl
[23.] Degeneration of Abelian Varieties, Springer, Berlin, 1990 (with an Appendix by David Mumford) | DOI | Zbl
[24.] Sur la -dimension des corps, Invent. Math., Volume 174 (2008), pp. 47-80 | DOI | MR | Zbl
[25.] Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., Volume 144 (2001), pp. 253-280 | DOI | MR | Zbl
[26.] Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. I. Le groupe , Bull. Soc. Math. Fr., Volume 131 (2003), pp. 307-358 | DOI
[27.] Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. II. Les groupes et , Bull. Soc. Math. Fr., Volume 133 (2005), pp. 159-197 | DOI
[28.] Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension cohomologique , Compos. Math., Volume 125 (2001), pp. 283-325 | DOI | Zbl
[29.] Torseurs sur la droite affine, Transform. Groups, Volume 7 (2002), pp. 231-245 | DOI | MR | Zbl
[30.] Serre’s conjecture II: a survey, Quadratic Forms, Linear Algebraic Groups, and Cohomology, Springer, New York, 2010, pp. 41-56 | DOI
[31.] On the flatness of local models for the symplectic group, Adv. Math., Volume 176 (2003), pp. 89-115 | DOI | MR | Zbl
[32.] The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties, J. Reine Angew. Math., Volume 609 (2007), pp. 161-213 | MR | Zbl
[33.] Le groupe de Brauer. I, II, III, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 46-188
[34.] Introduction to Shimura varieties with bad reduction of parahoric type, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., Am. Math. Soc., Providence, 2005, pp. 583-642
[35.] The base change fundamental lemma for central elements in parahoric Hecke algebras, Duke Math. J., Volume 149 (2009), pp. 569-643 (Corrigendum, on the author’s web page) | DOI | MR | Zbl
[36.] The stable Bernstein center and test functions for Shimura varieties, Automorphic Forms and Galois Representations, vol. 2, London Math. Soc., London, 2014, pp. 118-186 | DOI
[37.] Nearby cycles for local models of some Shimura varieties, Compos. Math., Volume 133 (2002), pp. 117-150 | DOI | MR | Zbl
[38.] T. Haines and M. Rapoport, On parahoric subgroups, 2008. Appendix to [57].
[39.] Autour du théorème de monodromie locale, Astérisque, Volume 223 (1994), pp. 9-57 Périodes -adiques (Bures-sur-Yvette, 1988) | Zbl
[40.] L. Illusie, Y. Laszlo and F. Orgogozo, Travaux de Gabber sur l’uniformisation locale et la cohomologie etale des schemas quasi-excellents. Seminaire a l’Ecole polytechnique 2006–2008, | arXiv
[41.] Representations of Algebraic Groups, Am. Math. Soc., Providence, 2003 | Zbl
[42.] Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), 1973, pp. 167-200 (Exp. No. 409) | DOI
[43.] Integral models for Shimura varieties of abelian type, J. Am. Math. Soc., Volume 23 (2010), pp. 967-1012 | DOI | MR | Zbl
[44.] points on Shimura varieties of abelian type, J. Am. Math. Soc., Volume 30 (2017), pp. 819-914 | DOI | Zbl
[45.] Shimura varieties and twisted orbital integrals, Math. Ann., Volume 269 (1984), pp. 287-300 | DOI | MR | Zbl
[46.] Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992), pp. 373-444 | DOI | MR | Zbl
[47.] The cohomological dimension of the quotient field of the two-dimensional complete local domain, Compos. Math., Volume 79 (1991), pp. 157-167 | MR | Zbl
[48.] Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math., Volume 518 (2000), pp. 213-241 | MR | Zbl
[49.] Some contemporary problems with origins in the Jugendtraum, Mathematical Developments Arising from Hilbert Problems (1976), pp. 401-418 | DOI
[50.] Relations between Dieudonné displays and crystalline Dieudonné theory, Algebra Number Theory, Volume 8 (2014), pp. 2201-2262 | DOI | MR | Zbl
[51.] Singularities, character formulas, and a -analog of weight multiplicities, Analysis and Topology on Singular Spaces, II, III (1983), pp. 208-229
[52.] K. Madapusi Pera, Toroidal compactifications of integral models of Shimura varieties of Hodge type. Preprint, | arXiv
[53.] Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic Forms, Shimura Varieties, and -functions, vol. I (1990), pp. 283-414
[54.] The points on a Shimura variety modulo a prime of good reduction, The Zeta Functions of Picard Modular Surfaces, Univ. Montréal, Montreal, 1992, pp. 151-253
[55.] Groupes de Picard et problèmes de Skolem. I, II, Ann. Sci. Éc. Norm. Supér. (4), Volume 22 (1989), pp. 161-179 (181–194) | DOI | Zbl
[56.] On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebraic Geom., Volume 9 (2000), pp. 577-605 | MR | Zbl
[57.] Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008), pp. 118-198 (with an Appendix by T. Haines and M. Rapoport) | DOI | MR | Zbl
[58.] Local models of Shimura varieties. I. Geometry and combinatorics, Handbook of Moduli, vol. III, International Press, Somerville, 2013, pp. 135-217
[59.] Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math., Volume 194 (2013), pp. 147-254 | DOI | MR | Zbl
[60.] On finite group actions on reductive groups and buildings, Invent. Math., Volume 147 (2002), pp. 545-560 | DOI | MR | Zbl
[61.] On quasi-reductive group schemes, J. Algebraic Geom., Volume 15 (2006), pp. 507-549 (with an Appendix by Brian Conrad) | DOI | MR | Zbl
[62.] On the bad reduction of Shimura varieties, Automorphic Forms, Shimura Varieties, and -functions, vol. II (1990), pp. 253-321
[63.] A guide to the reduction modulo of Shimura varieties, Astérisque, Volume 298 (2005), pp. 271-318 (Automorphic forms. I) | MR | Zbl
[64.] Period spaces for -divisible groups, Princeton University Press, Princeton, 1996 | Zbl
[65.] Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl
[66.] Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math., Volume 117 (1967), pp. 215-279 | DOI | MR | Zbl
[67.] Galois Cohomology, Springer, Berlin, 1994 | DOI | Zbl
[68.] Triviality of vector bundles over the affine space , Proc. Natl. Acad. Sci. USA, Volume 44 (1958), pp. 456-458 | DOI | Zbl
[69.] Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math., Volume 247 (1971), pp. 196-220 | MR | Zbl
[70.] Reductive groups over local fields, Automorphic Forms, Representations and -functions (Proc. Sympos. Pure Math.) (1979), pp. 29-69 | DOI
[71.] Existence de -cristaux avec structures supplémentaires, Adv. Math., Volume 190 (2005), pp. 196-224 | DOI | MR | Zbl
[72.] J.-K. Yu, Smooth models associated to concave functions in Bruhat-Tits theory, 2002. Preprint.
[73.] A Dieudonné theory for -divisible groups, Class Field Theory—Its Centenary and Prospect (2001), pp. 139-160 | DOI
[74.] Windows for displays of -divisible groups, Moduli of Abelian Varieties (2001), pp. 491-518 | DOI
[75.] The display of a formal -divisible group, Astérisque, Volume 278 (2002), pp. 127-248 (Cohomologies -adiques et applications arithmétiques, I.) | MR | Zbl
Cité par Sources :