Congruence modules related to Eisenstein series
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 36 (2003) no. 2, pp. 225-269.
@article{ASENS_2003_4_36_2_225_0,
     author = {Ohta, Masami},
     title = {Congruence modules related to {Eisenstein} series},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {225--269},
     publisher = {Elsevier},
     volume = {Ser. 4, 36},
     number = {2},
     year = {2003},
     doi = {10.1016/S0012-9593(03)00009-0},
     mrnumber = {1980312},
     zbl = {1047.11046},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S0012-9593(03)00009-0/}
}
TY  - JOUR
AU  - Ohta, Masami
TI  - Congruence modules related to Eisenstein series
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2003
SP  - 225
EP  - 269
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S0012-9593(03)00009-0/
DO  - 10.1016/S0012-9593(03)00009-0
LA  - en
ID  - ASENS_2003_4_36_2_225_0
ER  - 
%0 Journal Article
%A Ohta, Masami
%T Congruence modules related to Eisenstein series
%J Annales scientifiques de l'École Normale Supérieure
%D 2003
%P 225-269
%V 36
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S0012-9593(03)00009-0/
%R 10.1016/S0012-9593(03)00009-0
%G en
%F ASENS_2003_4_36_2_225_0
Ohta, Masami. Congruence modules related to Eisenstein series. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 36 (2003) no. 2, pp. 225-269. doi : 10.1016/S0012-9593(03)00009-0. http://archive.numdam.org/articles/10.1016/S0012-9593(03)00009-0/

[1] Greenberg R., Stevens G., p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111 (1993) 407-447. | MR | Zbl

[2] Harder G., Pink R., Modular konstruierte unverzweigte abelsche p-Erweiterungen von Q(ζp) und die Struktur ihrer Galoisgruppen, Math. Nachr. 159 (1992) 83-99. | Zbl

[3] Hecke E., Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg 5 (1927) 199-224, (Math. Werke No. 24). | JFM

[4] Hida H., Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Sup. (4) 19 (1986) 231-273. | Numdam | MR | Zbl

[5] Hida H., Hecke algebras for GL1 and GL2, in: Sém. Théorie des Nombres, Paris, 1984-85, Progress in Math., 63, Birkhäuser, 1986, pp. 131-163. | MR | Zbl

[6] Hida H., Galois representations into GL2(Zp〚X〛) attached to ordinary cusp forms, Invent. Math. 85 (1986) 543-613. | Zbl

[7] Hida H., A p-adic measure attached to the zeta functions associated with two elliptic modular forms II, Ann. Inst. Fourier 38 (1988) 1-83. | Numdam | MR | Zbl

[8] Hida H., Elementary Theory of L-functions and Eisenstein Series, London Math. Soc. Stud. Texts, 26, Cambridge Univ. Press, 1993. | MR | Zbl

[9] Kurihara M., Ideal class groups of cyclotomic fields and modular forms of level 1, J. Number Theory 45 (1993) 281-294. | MR | Zbl

[10] Kubert D., Lang S., Modular units, Springer-Verlag, 1981. | MR | Zbl

[11] Mazur B., Wiles A., Class fields of abelian extensions of Q, Invent. Math. 76 (1984) 179-330. | MR | Zbl

[12] Mazur B., Wiles A., On p-adic analytic families of Galois representations, Comp. Math. 59 (1986) 231-264. | Numdam | MR | Zbl

[13] Ohta M., On cohomology groups attached to towers of algebraic curves, J. Math. Soc. Japan 45 (1993) 131-183. | MR | Zbl

[14] Ohta M., On the p-adic Eichler-Shimura isomorphism for Λ-adic cusp forms, J. Reine Angew. Math. 463 (1995) 49-98. | Zbl

[15] Ohta M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves, Comp. Math. 115 (1999) 241-301. | MR | Zbl

[16] Ohta M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. 318 (2000) 557-583. | MR | Zbl

[17] Saby N., Théorie d'Iwasawa géométrique: un théorème de comparaison, J. Number Theory 59 (1996) 225-247. | MR | Zbl

[18] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971. | MR | Zbl

[19] Stevens G., Arithmetic on Modular Curves, Progress in Math., 20, Birkhäuser, 1982. | MR | Zbl

[20] Tilouine J., Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. Fr. 115 (1987) 329-360. | Numdam | MR | Zbl

[21] Wiles A., On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988) 529-573. | Zbl

[22] Wiles A., The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990) 493-540. | MR | Zbl

Cited by Sources: