On the distance between the empirical process and its concave majorant in a monotone regression framework
Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 2, pp. 217-240.
@article{AIHPB_2003__39_2_217_0,
     author = {Durot, C\'ecile and Tocquet, Anne-Sophie},
     title = {On the distance between the empirical process and its concave majorant in a monotone regression framework},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {217--240},
     publisher = {Elsevier},
     volume = {39},
     number = {2},
     year = {2003},
     doi = {10.1016/S0246-0203(02)00013-4},
     mrnumber = {1962134},
     zbl = {1010.62032},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S0246-0203(02)00013-4/}
}
TY  - JOUR
AU  - Durot, Cécile
AU  - Tocquet, Anne-Sophie
TI  - On the distance between the empirical process and its concave majorant in a monotone regression framework
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2003
SP  - 217
EP  - 240
VL  - 39
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S0246-0203(02)00013-4/
DO  - 10.1016/S0246-0203(02)00013-4
LA  - en
ID  - AIHPB_2003__39_2_217_0
ER  - 
%0 Journal Article
%A Durot, Cécile
%A Tocquet, Anne-Sophie
%T On the distance between the empirical process and its concave majorant in a monotone regression framework
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2003
%P 217-240
%V 39
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S0246-0203(02)00013-4/
%R 10.1016/S0246-0203(02)00013-4
%G en
%F AIHPB_2003__39_2_217_0
Durot, Cécile; Tocquet, Anne-Sophie. On the distance between the empirical process and its concave majorant in a monotone regression framework. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 2, pp. 217-240. doi : 10.1016/S0246-0203(02)00013-4. http://archive.numdam.org/articles/10.1016/S0246-0203(02)00013-4/

[1] H.D. Brunk, Estimation of isotonic regression, in: Nonparametric Techniques in Statistical Inference, Cambridge Univ. Press, 1970, pp. 177-195. | MR

[2] C. Durot, Sharp asymptotics for isotonic regression, Probab. Theory Related Fields 122 (2002) 222-240. | MR | Zbl

[3] P. Groeneboom, G. Hooghiemstra, H.P. Lopuhaä, Asymptotic normality of the l1-error of the grenander estimator, Ann. Statist. 27 (1999) 1316-1347. | MR | Zbl

[4] J. Huang, J.A. Wellner, Estimation of a monotone density or monotone hazard under random censoring, Scand. J. Statist. 22 (1995) 3-33. | MR | Zbl

[5] J. Kiefer, J. Wolfowitz, Asymptotically minimax estimation of concave and convexe distribution functions, Z. Wahrsch. Verw. Gebiete 34 (1976) 73-85. | MR | Zbl

[6] V.N. Kulikov, H.P. Lopuhaä, The limit process of the difference between the empirical distribution function and its concave majorant, Manuscript in preparation, 2002.

[7] B.L.S. Prakasa Rao, Estimation of a unimodal density, Sankhya Ser. A 31 (1969) 23-36. | MR | Zbl

[8] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991. | MR | Zbl

[9] A.I. Sakhanenko, Estimates in the invariance principle, Trudy. Inst. Mat. Sibirsk. Otdel (1972) 27-44. | MR | Zbl

[10] Y. Wang, The limit distribution of the concave majorant of an empirical distribution function, Statist. Probab. Letters 20 (1994) 81-84. | MR | Zbl

Cité par Sources :