@article{AIHPB_2003__39_6_1043_0, author = {Bena{\"\i}m, Michel and Raimond, Olivier}, title = {Self-interacting diffusions {II} : convergence in law}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1043--1055}, publisher = {Elsevier}, volume = {39}, number = {6}, year = {2003}, doi = {10.1016/S0246-0203(03)00028-1}, mrnumber = {2010396}, zbl = {1064.60191}, language = {en}, url = {https://www.numdam.org/articles/10.1016/S0246-0203(03)00028-1/} }
TY - JOUR AU - Benaïm, Michel AU - Raimond, Olivier TI - Self-interacting diffusions II : convergence in law JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 1043 EP - 1055 VL - 39 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0246-0203(03)00028-1/ DO - 10.1016/S0246-0203(03)00028-1 LA - en ID - AIHPB_2003__39_6_1043_0 ER -
%0 Journal Article %A Benaïm, Michel %A Raimond, Olivier %T Self-interacting diffusions II : convergence in law %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 1043-1055 %V 39 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0246-0203(03)00028-1/ %R 10.1016/S0246-0203(03)00028-1 %G en %F AIHPB_2003__39_6_1043_0
Benaïm, Michel; Raimond, Olivier. Self-interacting diffusions II : convergence in law. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 6, pp. 1043-1055. doi : 10.1016/S0246-0203(03)00028-1. https://www.numdam.org/articles/10.1016/S0246-0203(03)00028-1/
[1] Self-interacting diffusions, Probab. Theory Related Fields 122 (2002) 1-41. | MR | Zbl
, , ,[2] On self attracting/repelling diffusions, C.R. Acad. Sci. Paris, Ser. I 335 (2002) 541-544. | MR | Zbl
, ,[3] Stochastic Differential Equation and Diffusion Processes, North-Holland, 1981. | MR | Zbl
, ,[4] The embedding theorem for Riemannian manifolds, Ann. Math. 63 (1956) 20-63. | MR | Zbl
,- Current fluctuations of a self-interacting diffusion on a ring, Journal of Physics A: Mathematical and Theoretical, Volume 58 (2025) no. 1, p. 015002 | DOI:10.1088/1751-8121/ad9788
- Least Squares Estimation for the Linear Self-Attracting Diffusion Driven by α-Stable Motions, Advances in Applied Mathematics, Volume 10 (2021) no. 11, p. 3969 | DOI:10.12677/aam.2021.1011422
- Analysis of an Adaptive Biasing Force method based on self-interacting dynamics, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ejp490
- Self-repelling diffusions on a Riemannian manifold, Probability Theory and Related Fields, Volume 169 (2017) no. 1-2, p. 63 | DOI:10.1007/s00440-016-0717-1
- Self-repelling diffusions via an infinite dimensional approach, Stochastic Partial Differential Equations: Analysis and Computations, Volume 3 (2015) no. 4, p. 506 | DOI:10.1007/s40072-015-0059-5
- Stationary Distributions for Jump Processes with Inert Drift, Malliavin Calculus and Stochastic Analysis, Volume 34 (2013), p. 139 | DOI:10.1007/978-1-4614-5906-4_7
- Stationary distributions for diffusions with inert drift, Probability Theory and Related Fields, Volume 146 (2010) no. 1-2 | DOI:10.1007/s00440-008-0182-6
- A Class of Self-Interacting Processes with Applications to Games and Reinforced Random Walks, SIAM Journal on Control and Optimization, Volume 48 (2010) no. 7, p. 4707 | DOI:10.1137/080721091
- Self-interacting diffusions: a simulated annealing version, Probability Theory and Related Fields, Volume 144 (2009) no. 1-2, p. 247 | DOI:10.1007/s00440-008-0147-9
- Self-Interacting Markov Chains: Some Asymptotics, Stochastic Analysis and Applications, Volume 27 (2009) no. 1, p. 196 | DOI:10.1080/07362990802405810
- An asymptotic result for Brownian polymers, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 44 (2008) no. 1 | DOI:10.1214/07-aihp113
- A Bakry-Emery Criterion for Self-Interacting Diffusions, Seminar on Stochastic Analysis, Random Fields and Applications V, Volume 59 (2007), p. 19 | DOI:10.1007/978-3-7643-8458-6_2
- Self-interacting diffusions. III. Symmetric interactions, The Annals of Probability, Volume 33 (2005) no. 5 | DOI:10.1214/009117905000000251
Cité par 13 documents. Sources : Crossref