Critical groups computations on a class of Sobolev Banach spaces via Morse index
Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 2, pp. 271-292.
@article{AIHPC_2003__20_2_271_0,
     author = {Cingolani, Silvia and Vannella, Giuseppina},
     title = {Critical groups computations on a class of {Sobolev} {Banach} spaces via {Morse} index},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {271--292},
     publisher = {Elsevier},
     volume = {20},
     number = {2},
     year = {2003},
     doi = {10.1016/S0294-1449(02)00011-2},
     mrnumber = {1961517},
     zbl = {1023.58004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S0294-1449(02)00011-2/}
}
TY  - JOUR
AU  - Cingolani, Silvia
AU  - Vannella, Giuseppina
TI  - Critical groups computations on a class of Sobolev Banach spaces via Morse index
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2003
SP  - 271
EP  - 292
VL  - 20
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S0294-1449(02)00011-2/
DO  - 10.1016/S0294-1449(02)00011-2
LA  - en
ID  - AIHPC_2003__20_2_271_0
ER  - 
%0 Journal Article
%A Cingolani, Silvia
%A Vannella, Giuseppina
%T Critical groups computations on a class of Sobolev Banach spaces via Morse index
%J Annales de l'I.H.P. Analyse non linéaire
%D 2003
%P 271-292
%V 20
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S0294-1449(02)00011-2/
%R 10.1016/S0294-1449(02)00011-2
%G en
%F AIHPC_2003__20_2_271_0
Cingolani, Silvia; Vannella, Giuseppina. Critical groups computations on a class of Sobolev Banach spaces via Morse index. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 2, pp. 271-292. doi : 10.1016/S0294-1449(02)00011-2. http://archive.numdam.org/articles/10.1016/S0294-1449(02)00011-2/

[1] Arcoya D., Boccardo L., Critical points for multiple integrands of the calculus of variations, Arch. Rat. Mech. Anal. 134 (1996) 249-274. | MR | Zbl

[2] Benci V., D'Avenia P., Fortunato D., Pisani L., Solitons in several space dimensions: a Derrick's problem and infinitely many solutions, Arch. Rat. Mech. Anal. 154 (2000) 297-324. | MR | Zbl

[3] Benci V., Fortunato D., Pisani L., Soliton-like solutions of a Lorentz invariant equation in dimension 3, Math. Phys. 3 (1998) 315-344. | MR | Zbl

[4] Chang K., Morse theory on Banach space and its applications to partial differential equations, Chin. Ann. of Math. 4B (1983) 381-399. | MR | Zbl

[5] Chang K., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. | MR | Zbl

[6] Chang K., Morse theory in nonlinear analysis, in: Ambrosetti A., Chang K.C., Ekeland I. (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, Word Scientific, Singapore, 1998. | MR | Zbl

[7] Cingolani S., Vannella G., Some results on critical groups for a class of functionals defined on Sobolev Banach spaces, Rend. Acc. Naz. Lincei 12 (2001) 1-5. | EuDML | MR | Zbl

[8] Corvellec J.N., Degiovanni M., Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Differential Equations 136 (1997) 268-293. | MR | Zbl

[9] Dibenedetto E., C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis TMA 7 (1983) 827-850. | Zbl

[10] Egnell H., Existence an nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104 (1988) 57-77. | MR | Zbl

[11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998. | Zbl

[12] Ioffe A.D., On lower semicontinuity of integral functionals I and II, SIAM J. Control Optim. 15 (1977) 521-538, and 991-1000. | MR | Zbl

[13] Ladyzhenskaya O.A., Ural'Tseva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR | Zbl

[14] Lancelotti S., Morse index estimates for continuous functionals associated with quasilinear elliptic equations, Adv. Differential Equations 7 (2002) 99-128. | MR | Zbl

[15] Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989. | MR | Zbl

[16] Mercuri F., Palmieri G., Problems in extending Morse theory to Banach spaces, Boll. UMI 12 (1975) 397-401. | MR | Zbl

[17] Palais R., Morse theory on Hilbert manifolds, Topology 2 (1963) 299-340. | MR | Zbl

[18] Smale S., Morse theory and a non-linear generalization of the Dirichlet problem, Ann. Math. 80 (1964) 382-396. | MR | Zbl

[19] Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966. | MR | Zbl

[20] Tolksdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150. | MR | Zbl

[21] Tolksdorf P., On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Part. Differential Equations 8 (1983) 773-817. | MR | Zbl

[22] Tromba A.J., A general approach to Morse theory, J. Differential Geom. 12 (1977) 47-85. | MR | Zbl

[23] Uhlenbeck K., Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972) 430-445. | MR | Zbl

Cited by Sources: