@article{AIHPC_2003__20_4_645_0, author = {Chen, Gui-Qiang and Perthame, Beno{\^\i}t}, title = {Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {645--668}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2003}, doi = {10.1016/S0294-1449(02)00014-8}, mrnumber = {1981403}, zbl = {1031.35077}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0294-1449(02)00014-8/} }
TY - JOUR AU - Chen, Gui-Qiang AU - Perthame, Benoît TI - Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 645 EP - 668 VL - 20 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0294-1449(02)00014-8/ DO - 10.1016/S0294-1449(02)00014-8 LA - en ID - AIHPC_2003__20_4_645_0 ER -
%0 Journal Article %A Chen, Gui-Qiang %A Perthame, Benoît %T Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 645-668 %V 20 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0294-1449(02)00014-8/ %R 10.1016/S0294-1449(02)00014-8 %G en %F AIHPC_2003__20_4_645_0
Chen, Gui-Qiang; Perthame, Benoît. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 4, pp. 645-668. doi : 10.1016/S0294-1449(02)00014-8. http://archive.numdam.org/articles/10.1016/S0294-1449(02)00014-8/
[1] Renormalized entropy solutions of scalar conservation laws, Ann. Sc. Norm. Sup. Pisa 29 (2000) 313-327. | Numdam | MR | Zbl
, , ,[2] Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal. 157 (2001) 75-90. | MR | Zbl
,[3] Résolution d'équations d'évolution quasilinéaires en dimensions N d'espace à l'aide d'équations linéaires en dimensions N+1, J. Differential Equations 50(3) (1982) 375-390. | MR | Zbl
,[4] Uniqueness of solutions of the initial-value problem for ut−Δϕ(u)=0, J. Math. Pure Appl. (9) 58 (2) (1979) 153-163. | Zbl
, ,[5] Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic, Dordrecht, 1999. | MR | Zbl
, , , ,[6] Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal. 147 (1999) 269-361. | MR | Zbl
,[7] Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986. | Zbl
, ,[8] Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal. 33 (2001) 751-762. | MR | Zbl
, ,[9] Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimension, in: MAFELAP 1999 (Uxbridge), The Mathematics of Finite Elements and Applications, 10, Elsevier, Oxford, 1999, pp. 225-238. | MR | Zbl
, ,[10] Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl. 130 (1982) 131-176. | MR | Zbl
,[11] Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal. 16 (1979) 503-522. | MR | Zbl
, , ,[12] Filtration in Porous Media and Industrial Applications, Lecture Notes in Math., 1734, Springer-Verlag, Berlin, 2000. | Zbl
, , ,[13] Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B 16 (1995) 1-14. | MR | Zbl
, , ,[14] R. Eymard, T. Gallouët, R. Herbin, A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Preprint, 2001. | MR
[15] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. | MR | Zbl
, ,[16] Improved theory for a nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (4) (1989) 165-224. | Numdam | MR | Zbl
,[17] On convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, 35 (2) (2001) 239-270. | Numdam | MR | Zbl
, ,[18] First order quasilinear equations with several space variables, Mat. Sbornik 123 (1970) 228-255, Engl. Transl.: , Math. USSR Sb. 10 (1970) 217-273. | Zbl
,[19] Formulation cinétique des lois de conservation scalaires multidimensionnelles, C. R. Acad. Sci. Paris, Série I Math. 312 (1991) 97-102. | MR | Zbl
, , ,[20] A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994) 169-191. | MR | Zbl
, , ,[21] Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pure Appl. 77 (1998) 1055-1064. | MR | Zbl
,[22] B. Perthame, Kinetic Formulations of Conservation Laws, Oxford Univ. Press, Oxford (to appear). | MR | Zbl
[23] Kruzhkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc. 350 (1998) 2847-2870. | MR | Zbl
, ,[24] Cauchy's problem for degenerate second order quasilinear parabolic equations, Mat. Sbornik 78 (120) (1969) 374-396, Engl. Transl.: , Math. USSR Sb. 7 (3) (1969) 365-387. | MR | Zbl
, ,Cited by Sources: