@article{AIHPC_2003__20_4_669_0, author = {Lombardi, E. and Iooss, G.}, title = {Gravity solitary waves with polynomial decay to exponentially small ripples at infinity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {669--704}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2003}, doi = {10.1016/S0294-1449(02)00023-9}, mrnumber = {1981404}, zbl = {1068.76008}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0294-1449(02)00023-9/} }
TY - JOUR AU - Lombardi, E. AU - Iooss, G. TI - Gravity solitary waves with polynomial decay to exponentially small ripples at infinity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 669 EP - 704 VL - 20 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0294-1449(02)00023-9/ DO - 10.1016/S0294-1449(02)00023-9 LA - en ID - AIHPC_2003__20_4_669_0 ER -
%0 Journal Article %A Lombardi, E. %A Iooss, G. %T Gravity solitary waves with polynomial decay to exponentially small ripples at infinity %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 669-704 %V 20 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0294-1449(02)00023-9/ %R 10.1016/S0294-1449(02)00023-9 %G en %F AIHPC_2003__20_4_669_0
Lombardi, E.; Iooss, G. Gravity solitary waves with polynomial decay to exponentially small ripples at infinity. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 4, pp. 669-704. doi : 10.1016/S0294-1449(02)00023-9. http://archive.numdam.org/articles/10.1016/S0294-1449(02)00023-9/
[1] On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc. 346 (1994) 399-419. | MR | Zbl
,[2] Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math. 167 (1991) 107-126. | MR | Zbl
, ,[3] Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967) 559-592. | Zbl
,[4] Solitary internal waves in deep water, J. Fluid Mech. 29 (1967) 593-607. | Zbl
, ,[5] F. Dias, G. Iooss, Water-Waves as a Spatial Dynamical System, Handbook of Mathematical Fluid Dynamics, to appear. | MR | Zbl
[6] Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid Mech. 1 (1999) 24-61. | MR | Zbl
,[7] Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation, Phil. Trans. R. Soc. London A 360 (2002) 2245-2336. | MR | Zbl
, , ,[8] Détermination rigoureuse des ondes permanentes d'ampleur finie, Math. Annalen 93 (1925) 264-314. | JFM | MR
,[9] Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rat. Mech. Anal. 137 (1997) 227-304. | MR | Zbl
,[10] Oscillatory Integrals and Phenomena Beyond all Algebraic Orders, with Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., 1741, Springer, 2000. | MR | Zbl
,[11] Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091. | MR
,[12] Interfacial periodic waves of permanent form with free-surface boundary conditions, J. Fluid Mech. 437 (2001) 325-336. | MR | Zbl
, ,[13] Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave, J. Math. Anal. Appl. 172 (1993) 533-566. | MR | Zbl
, ,[14] Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Analysis 30 (8) (1997) 5481-5490. | MR | Zbl
,[15] Nonexistence of truly solitary waves in water with small surface tension, Proc. Roy. London A 455 (1999) 2191-2228. | MR | Zbl
,Cited by Sources: