@article{AIHPC_2003__20_3_405_0, author = {Burton, G. R. and Douglas, R. J.}, title = {Uniqueness of the polar factorisation and projection of a vector-valued mapping}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {405--418}, publisher = {Elsevier}, volume = {20}, number = {3}, year = {2003}, doi = {10.1016/S0294-1449(02)00026-4}, mrnumber = {1972869}, zbl = {1038.28013}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0294-1449(02)00026-4/} }
TY - JOUR AU - Burton, G. R. AU - Douglas, R. J. TI - Uniqueness of the polar factorisation and projection of a vector-valued mapping JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 405 EP - 418 VL - 20 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0294-1449(02)00026-4/ DO - 10.1016/S0294-1449(02)00026-4 LA - en ID - AIHPC_2003__20_3_405_0 ER -
%0 Journal Article %A Burton, G. R. %A Douglas, R. J. %T Uniqueness of the polar factorisation and projection of a vector-valued mapping %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 405-418 %V 20 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0294-1449(02)00026-4/ %R 10.1016/S0294-1449(02)00026-4 %G en %F AIHPC_2003__20_3_405_0
Burton, G. R.; Douglas, R. J. Uniqueness of the polar factorisation and projection of a vector-valued mapping. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 3, pp. 405-418. doi : 10.1016/S0294-1449(02)00026-4. http://archive.numdam.org/articles/10.1016/S0294-1449(02)00026-4/
[1] J.-D. Benamou, Transformation conservant la mesure, mécanique des fluides incompressibles et modèle semi-géostrophique en météorologie, Thèse de 3ème cycle, Université de Paris IX-Dauphine, 1992.
[2] Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I 305 (1987) 805-808. | MR | Zbl
,[3] Polar factorisation and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991) 375-417. | MR | Zbl
,[4] Y. Brenier, A geometric presentation of the semi-geostrophic equations, Isaac Newton Institute report, 1996.
[5] Rearrangements and polar factorisation of countably degenerate functions, Proc. Roy. Soc. Edinburgh 128A (1998) 671-681. | MR | Zbl
, ,[6] Rearrangements of vector valued functions, with application to atmospheric and oceanic flows, SIAM J. Math. Anal. 29 (1998) 891-902. | MR | Zbl
,[7] Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. | MR | Zbl
, ,[8] On a conjecture of Klee and Martin for convex bodies, Proc. London Math. Soc. (3) 23 (1971) 668-682. | MR | Zbl
,[9] Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (1995) 309-323. | MR | Zbl
,[10] Convex Analysis, Princeton University Press, Princeton, NJ, 1970. | MR | Zbl
,[11] Real Analysis, Macmillan, New York, 1988. | MR | Zbl
,[12] Measure preserving transformations and rearrangements, J. Math. Anal. Appl. 31 (1970) 449-458. | MR | Zbl
,Cité par Sources :