@article{AIHPC_2003__20_6_999_0, author = {Cano-Casanova, Santiago and L\'opez-G\'omez, Juli\'an}, title = {Permanence under strong aggressions is possible}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {999--1041}, publisher = {Elsevier}, volume = {20}, number = {6}, year = {2003}, doi = {10.1016/S0294-1449(03)00022-2}, mrnumber = {2008687}, zbl = {1086.35054}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0294-1449(03)00022-2/} }
TY - JOUR AU - Cano-Casanova, Santiago AU - López-Gómez, Julián TI - Permanence under strong aggressions is possible JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 999 EP - 1041 VL - 20 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0294-1449(03)00022-2/ DO - 10.1016/S0294-1449(03)00022-2 LA - en ID - AIHPC_2003__20_6_999_0 ER -
%0 Journal Article %A Cano-Casanova, Santiago %A López-Gómez, Julián %T Permanence under strong aggressions is possible %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 999-1041 %V 20 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0294-1449(03)00022-2/ %R 10.1016/S0294-1449(03)00022-2 %G en %F AIHPC_2003__20_6_999_0
Cano-Casanova, Santiago; López-Gómez, Julián. Permanence under strong aggressions is possible. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 6, pp. 999-1041. doi : 10.1016/S0294-1449(03)00022-2. http://archive.numdam.org/articles/10.1016/S0294-1449(03)00022-2/
[1] Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983) 225-254. | MR | Zbl
,[2] Linear and Quasilinear Parabolic Problems, Monographs Math., 89, Birkhäuser, Basel, 1995. | MR | Zbl
,[3] A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations 146 (1998) 336-374. | MR | Zbl
, ,[4] Ecology, Individual, Populations and Communities, Blackwell Scientific Publications, Cambridge, MA, 1990.
, , ,[5] Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems, Nonlinear Anal. 49 (2002) 361-430. | MR | Zbl
,[6] Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations 178 (2002) 123-211. | MR | Zbl
, ,[7] S. Cano-Casanova, J. López-Gómez, Varying domains in a general class of sublinear elliptic problems, submited. | Zbl
[8] On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol. 37 (1998) 103-145. | MR | Zbl
, ,[9] Permanence in some diffusive Lotka-Volterra models for three interacting species, Dynamic Systems Appl. 2 (1993) 505-530. | MR | Zbl
, , ,[10] On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc. 326 (1991) 829-859. | MR | Zbl
,[11] Positivity of maps and applications, in: , (Eds.), Topological Nonlinear Analysis, Degree, Singularities and Variations, Progr. Nonlinear Differential Equations Appl., 15, Birkhäuser, Basel, 1995, pp. 303-340. | MR | Zbl
,[12] Periodic-Parabolic Boundary Value Problems and Positivity, Longman, Harlow, 1991. | MR | Zbl
,[13] On an abstract competition model and applications, Nonlinear Anal. 16 (1991) 917-940. | MR | Zbl
, ,[14] Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math. 383 (1988) 1-58. | MR | Zbl
,[15] Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc. 348 (1996) 4083-4094. | MR | Zbl
, , ,[16] Permanence under strong competition, World Sci. Ser. Appl. Anal., 4, Word Sci. Publishing, River Edge, NJ, 1995, 473-488. | MR | Zbl
,[17] The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations 127 (1996) 263-294. | MR | Zbl
,[18] The maximum principle for cooperative weakly coupled elliptic systems and some applications, Differential Integral Equations 7 (1994) 383-398. | MR | Zbl
, ,[19] Coexistence states and global attractivity for some convective diffusive competition models, Trans. Amer. Math. Soc. 347 (1995) 3797-3833. | MR | Zbl
, ,[20] Mathematical Biology, Biomathematics Texts, 19, Springer, Berlin, 1989. | MR | Zbl
,[21] Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. | MR
,[22] Diffusion and Ecological Problems: Mathematical Models, Springer, Berlin, 1980. | MR | Zbl
,[23] Topological Vector Spaces, Springer, New York, 1971. | MR | Zbl
,[24] Stable coexistence and bio-stability for competitive systems of ordered banach spaces, J. Differential Equations 176 (2001) 195-222. | MR | Zbl
, ,[25] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. | MR | Zbl
,[26] Discrete monotone dynamics and time periodic competition between two species, Differential Integral Equations 10 (1997) 547-576. | MR | Zbl
,[27] Sociobiology, Harvard University Press, Cambridge, MA, 1980.
,Cited by Sources: