Statistics/Probability Theory
Tail behavior of anisotropic norms for Gaussian random fields
[Comportement des queues pour les normes anisotropes des champs aléatoires gaussiens]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 85-88.

Nous étudions les grandes déviations logarithmiques pour les normes anisotropes des champs gaussiens aléatoires de deux variables. Le problème est résolu en calculant des normes anisotropes pour les opérateurs intégraux engendrés par les covariances. Nous trouvons des valeurs exactes de telles normes pour quelques classes importantes de champs gaussiens.

We investigate the logarithmic large deviation asymptotics for anisotropic norms of Gaussian random functions of two variables. The problem is solved by the evaluation of the anisotropic norms of corresponding integral covariance operators. We find the exact values of such norms for some important classes of Gaussian fields.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00013-4
Lifshits, Mikhail 1 ; Nazarov, Alexander 1 ; Nikitin, Yakov 1

1 Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg 198504, Russia
@article{CRMATH_2003__336_1_85_0,
     author = {Lifshits, Mikhail and Nazarov, Alexander and Nikitin, Yakov},
     title = {Tail behavior of anisotropic norms for {Gaussian} random fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {85--88},
     publisher = {Elsevier},
     volume = {336},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00013-4},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)00013-4/}
}
TY  - JOUR
AU  - Lifshits, Mikhail
AU  - Nazarov, Alexander
AU  - Nikitin, Yakov
TI  - Tail behavior of anisotropic norms for Gaussian random fields
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 85
EP  - 88
VL  - 336
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)00013-4/
DO  - 10.1016/S1631-073X(02)00013-4
LA  - en
ID  - CRMATH_2003__336_1_85_0
ER  - 
%0 Journal Article
%A Lifshits, Mikhail
%A Nazarov, Alexander
%A Nikitin, Yakov
%T Tail behavior of anisotropic norms for Gaussian random fields
%J Comptes Rendus. Mathématique
%D 2003
%P 85-88
%V 336
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)00013-4/
%R 10.1016/S1631-073X(02)00013-4
%G en
%F CRMATH_2003__336_1_85_0
Lifshits, Mikhail; Nazarov, Alexander; Nikitin, Yakov. Tail behavior of anisotropic norms for Gaussian random fields. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 85-88. doi : 10.1016/S1631-073X(02)00013-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)00013-4/

[1] Bennett, G. Schur multipliers, Duke Math. J., Volume 44 (1977), pp. 603-639

[2] Buslaev, A.P.; Kondrat'ev, V.A.; Nazarov, A.I. On a family of extremum problems and the properties of an integral, Math. Notes, Volume 64 (1998), pp. 719-725

[3] Henze, N.; Nikitin, Ya.Yu. A new approach to goodness-of-fit testing based on the integrated empirical process, J. Nonparametr. Statist., Volume 12 (2000), pp. 391-416

[4] Kantorovich, L.V.; Akilov, G.P. Functional Analysis, Pergamon Press, 1982

[5] Li, W.V. Comparison results for the lower tail of Gaussian seminorms, J. Theoret. Probab., Volume 5 (1992), pp. 1-31

[6] Lifshits, M.A. Gaussian Random Functions, Kluwer Academic Publishers, 1995

[7] Nazarov, A.I. On exact constant in the generalized Poincaré inequality, Probl. Math. Anal., Volume 24 (2002), pp. 155-180 (in Russian) J. Math. Sci., 112, 2002, pp. 4029-4047

[8] Nazarov, A.I.; Nikitin, Ya.Yu. Some extremal problems for Gaussian and empirical random fields, Proc. St. Petersburg Math. Soc., Volume 8 (2000), pp. 214-230 (in Russian) Amer. Math. Soc. Trans. Ser. 2, 205, 2002, pp. 189-202

[9] Nikitin, Ya.Yu. Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, 1995

[10] Rosenthal, H.P.; Sharek, S.J. On tensor products of operators from Lp to Lq, Lecture Notes in Math., 1470, Springer, 1991, pp. 108-132

[11] Rothmann, E.D. Tests of coordinate independence for a bivariate sample on a torus, Ann. Math. Statist., Volume 42 (1971), pp. 1962-1969

Cité par Sources :